GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2017
    In:  Cancer Research Vol. 77, No. 2_Supplement ( 2017-01-15), p. A42-A42
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 2_Supplement ( 2017-01-15), p. A42-A42
    Abstract: Introduction: The tumor microenvironment includes a range of physical, chemical, and cellular components such as pressure, hypoxia, acidosis, the extracellular matrix (ECM), stromal, and immune cells. These factors can influence the gene and protein expression of the various types of cells that make up the tumor as well as influence the selection of cells that can thrive in that environment; however, typical cancer cell culture rarely uses hypoxia and pressure nor utilizes substrates similar to the native ECM. We designed a system study the influence of hypoxia, pressure, and native ECM conditions on cancer cell lines and primary cells, with the goal of creating a more relevant culture environment for translational studies. Methods: Here, we comprehensively studied how hypoxia, pressure, and ECM composition and organization influences cell biology and gene expression, using transcriptome profiling across a range of physiologically-relevant culturing conditions to mimic various tumor microenvironments found within the body. To do this, we utilized Xcell's primary cell culture platform which includes a custom bioreactor that allows us to control both oxygen concentration (0.1%-20% O2) and hydrostatic pressure levels (26 to 260 mmHg / 0.5 psig to 5 psig). Additionally, we studied the influence of biomimetic substrates by controlling ECM composition and organization (aligned or unaligned collagen at concentrations from 1-2.5 mg/ml +/- fibronectin 0.1-10 microgram/ml) as both 2D ECM coatings and 3D hydrogels. Cell lines studied included models for brain cancer (U-87, A172), pancreatic cancer (PANC10.05), and prostate cancer (DU-145, PC-3, 22Rv1, LNCaP). We performed high-resolution immunofluorescence imaging and western blot protein expression analysis of key targets, including immunotherapy targets CTLA-4, PD-1, and PD-L1. Additionally, we applied our ability to tune culturing conditions to represent physiological conditions in the body for the successful culture of fresh primary tissues from normal volunteers as well as cancer patients for downstream analysis studies focused on biomarker discovery and as a clinical tool for disease monitoring and treatment decision-making. Conclusions: We identified both common and unique gene signatures across these different cells lines, with the hypoxic conditions activating HIF1 pathway activation having common across the cells studied whereas pressure results in more restricted signatures. Some cancer cell lines and PBMCs differentially express immunotherapeutic targets, at low oxygen and high pressure culturing conditions, resulting in reduced expression of key targets. Moreover, biomimetic ECM studies revealed modulation of ECM to represent a “tumor”-like ECM dramatically altered cell growth, morphology, and focal adhesion organization. In a 3D hydrogel context, a “tumor”-like ECM and a hypoxic environment dramatically enhanced tumor cell invasion. Consistently, analysis of mRNA-seq data revealed alterations in gene expression profiles of immunotherapeutic and drug-target pathways involving CTLA-4 and AR signaling as well as EMT targets. In contrast, we observed increased CD47 and CD44 expression at low oxygen and high pressure culturing conditions in cancer cell lines and PBMCs. Thus, supporting the notion that these are possible drug targets for tumors that are characterized by low oxygen levels and high interstitial fluid pressure. Citation Format: Luke Cassereau, Bruce Adams, Tianna Chow, Ajuni Sohota, Charles Ryan, James Lim. Systematic modulation of the physical microenvironment for characterization of cancer cell lines and primary tissue. [abstract]. In: Proceedings of the AACR Special Conference on Engineering and Physical Sciences in Oncology; 2016 Jun 25-28; Boston, MA. Philadelphia (PA): AACR; Cancer Res 2017;77(2 Suppl):Abstract nr A42.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 4 ( 2023-02-09), p. 3509-
    Abstract: Autism spectrum disorder (ASD) is a common, complex, and highly heritable condition with contributions from both common and rare genetic variations. While disruptive, rare variants in protein-coding regions clearly contribute to symptoms, the role of rare non-coding remains unclear. Variants in these regions, including promoters, can alter downstream RNA and protein quantity; however, the functional impacts of specific variants observed in ASD cohorts remain largely uncharacterized. Here, we analyzed 3600 de novo mutations in promoter regions previously identified by whole-genome sequencing of autistic probands and neurotypical siblings to test the hypothesis that mutations in cases have a greater functional impact than those in controls. We leveraged massively parallel reporter assays (MPRAs) to detect transcriptional consequences of these variants in neural progenitor cells and identified 165 functionally high confidence de novo variants (HcDNVs). While these HcDNVs are enriched for markers of active transcription, disruption to transcription factor binding sites, and open chromatin, we did not identify differences in functional impact based on ASD diagnostic status.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 32 ( 2020-08-11), p. 19328-19338
    Abstract: Co-option of transposable elements (TEs) to become part of existing or new enhancers is an important mechanism for evolution of gene regulation. However, contributions of lineage-specific TE insertions to recent regulatory adaptations remain poorly understood. Gibbons present a suitable model to study these contributions as they have evolved a lineage-specific TE called LAVA (LINE- Alu Sz-VNTR- Alu LIKE ), which is still active in the gibbon genome. The LAVA retrotransposon is thought to have played a role in the emergence of the highly rearranged structure of the gibbon genome by disrupting transcription of cell cycle genes. In this study, we investigated whether LAVA may have also contributed to the evolution of gene regulation by adopting enhancer function. We characterized fixed and polymorphic LAVA insertions across multiple gibbons and found 96 LAVA elements overlapping enhancer chromatin states. Moreover, LAVA was enriched in multiple transcription factor binding motifs, was bound by an important transcription factor (PU.1), and was associated with higher levels of gene expression in cis . We found gibbon-specific signatures of purifying/positive selection at 27 LAVA insertions. Two of these insertions were fixed in the gibbon lineage and overlapped with enhancer chromatin states, representing putative co-opted LAVA enhancers. These putative enhancers were located within genes encoding SETD2 and RAD9A, two proteins that facilitate accurate repair of DNA double-strand breaks and prevent chromosomal rearrangement mutations. Co-option of LAVA in these genes may have influenced regulation of processes that preserve genome integrity. Our findings highlight the importance of considering lineage-specific TEs in studying evolution of gene regulatory elements.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...