GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1992
    In:  Journal of Geophysical Research: Planets Vol. 97, No. E8 ( 1992-08-25), p. 13199-13255
    In: Journal of Geophysical Research: Planets, American Geophysical Union (AGU), Vol. 97, No. E8 ( 1992-08-25), p. 13199-13255
    Abstract: The nearly global radar imaging and altimetry measurements of the surface of Venus obtained by the Magellan spacecraft have revealed that deformational features of a wide variety of styles and spatial scales are nearly ubiquitous on the planet. Many areas of Venus record a superposition of different episodes of deformation and volcanism. This deformation is manifested both in areally distributed strain of modest magnitude, such as families of graben and wrinkle ridges at a few to a few tens of kilometers spacing in many plains regions, as well as in zones of concentrated lithospheric extension and shortening. The common coherence of strain patterns over hundreds of kilometers implies that even many local features reflect a crustal response to mantle dynamic processes. Ridge belts and mountain belts, which have characteristic widths and spacings of hundreds of kilometers, represent successive degrees of lithospheric shortening and crustal thickening. The mountain belts of Venus, as on Earth, show widespread evidence for lateral extension both during and following active crustal compression. Venus displays two principal geometrical variations on lithospheric extension: the quasi‐circular coronae (75–2600 km diameter) and broad rises with linear rift zones having dimensions of hundreds to thousands of kilometers. Both are sites of significant volcanic flux, but horizontal displacements may be limited to only a few tens of kilometers. Few large‐offset strike slip faults have been observed, but limited local horizontal shear is accommodated across many zones of crustal stretching or shortening. Several large‐scale tectonic features have extremely steep topographic slopes (in excess of 20°–30°) over a 10‐km horizontal scale; because of the tendency for such slopes to relax by ductile flow in the middle to lower crust, such regions are likely to be tectonically active. In general, the preserved record of global tectonics of Venus does not resemble oceanic plate tectonics on Earth, wherein large, rigid plates are separated by narrow zones of deformation along plate boundaries. Rather tectonic strain on Venus typically involves deformation distributed across broad zones tens to a few hundred kilometers wide separated by comparatively undeformed blocks having dimensions of hundreds of kilometers. These characteristics are shared with actively deforming continental regions on Earth. The styles and scales of tectonic deformation on Venus may be consequences of three differences from the Earth: (1) The absence of a hydrological cycle and significant erosion dictates that multiple episodes of deformation are typically well‐preserved. (2) A high surface temperature and thus a significantly shallower onset of ductile behavior in the middle to lower crust gives rise to a rich spectrum of smaller‐scale deformational features. (3) A strong coupling of mantle convection to the upper mantle portion of the lithosphere, probably because Venus lacks a mantle low‐viscosity zone, leads to crustal stress fields that are coherent over large distances. The lack of a global system of tectonic plates on Venus is likely a combined consequence of a generally lesser strength and more limited horizontal mobility of the lithosphere than on Earth.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1992
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Geophysical Research: Planets, American Geophysical Union (AGU), Vol. 97, No. E10 ( 1992-10-25), p. 16381-16381
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1992
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1992
    In:  Journal of Geophysical Research: Planets Vol. 97, No. E10 ( 1992-10-25), p. 16085-16120
    In: Journal of Geophysical Research: Planets, American Geophysical Union (AGU), Vol. 97, No. E10 ( 1992-10-25), p. 16085-16120
    Abstract: Ishtar Terra, the highest region on Venus, appears to have characteristics of both plume uplifts and convergent belts. Magellan imagery over longitudes 330°–30°E indicates a great variety of tectonic and volcanic activity, with large variations within distances of only a few 100 km. The most prominent terrain types are the volcanic plains of Lakshmi and the mountain belts of Maxwell, Freyja, and Danu. The belts appear to have marked variations in age. There are also extensive regions of tessera in both the upland and outboard plateaus, some rather featureless smooth scarps, flanking basins of complex extensional tectonics, and regions of gravitational or impact modification. Parts of Ishtar are the locations of contemporary vigorous tectonics and past extensive volcanism. Ishtar appears to be the consequence of a history of several 100 m.y., in which there have been marked changes in kinematic patterns and in which activity at any stage has been strongly influenced by the past. Ishtar demonstrates three general properties of Venus: (1) erosional degradation is absent, leading to preservation of patterns resulting from past activity; (2) many surface features are the responses of a competent layer less than 10 km thick to flows of 100 km or broader scale; and (3) these broader scale flows are controlled mainly by heterogeneities in the mantle. Ishtar Terra does not appear to be the result of a compression conveyed by an Earthlike lithosphere. But there is still doubt as to whether Ishtar is predominantly the consequence of a mantle upflow or downflow. Upflow is favored by the extensive volcanic plain of Lakshmi and the high geoid: topography ratio; downflow is favored by the intense deformation of the mountain belts and the absence of major rifts. Both could be occurring, or have recently occurred, with Lakshmi the most likely locus of upflow and Maxwell the main locus of downflow. But doubts about the causes of Ishtar will probably never be resolved without circularization of the Magellan orbit to obtain a more detailed gravity field.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1992
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 317, No. 5845 ( 2007-09-21), p. 1715-1718
    Abstract: Mars' polar regions are covered with ice-rich layered deposits that potentially contain a record of climate variations. The sounding radar SHARAD on the Mars Reconnaissance Orbiter mapped detailed subsurface stratigraphy in the Promethei Lingula region of the south polar plateau, Planum Australe. Radar reflections interpreted as layers are correlated across adjacent orbits and are continuous for up to 150 kilometers along spacecraft orbital tracks. The reflectors are often separated into discrete reflector sequences, and strong echoes are seen as deep as 1 kilometer. In some cases, the sequences are dipping with respect to each other, suggesting an interdepositional period of erosion. In Australe Sulci, layers are exhumed, indicating recent erosion.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2007
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2007
    In:  Science Vol. 317, No. 5845 ( 2007-09-21), p. 1718-1719
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 317, No. 5845 ( 2007-09-21), p. 1718-1719
    Abstract: Both poles of Mars are hidden beneath caps of layered ice. We calculated the density of the south polar layered deposits by combining the gravity field obtained from initial results of radio tracking of the Mars Reconnaissance Orbiter with existing surface topography from the Mars Orbiter Laser Altimeter on the Mars Global Surveyor spacecraft and basal topography from the Mars Advanced Radar for Subsurface and Ionospheric Sounding on the Mars Express spacecraft. The results indicate a best-fit density of 1220 kilograms per cubic meter, which is consistent with water ice that has ∼15% admixed dust. The results demonstrate that the deposits are probably composed of relatively clean water ice and also refine the martian surface-water inventory.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2007
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 332, No. 6031 ( 2011-05-13), p. 838-841
    Abstract: Shallow Radar soundings from the Mars Reconnaissance Orbiter reveal a buried deposit of carbon dioxide (CO 2 ) ice within the south polar layered deposits of Mars with a volume of 9500 to 12,500 cubic kilometers, about 30 times that previously estimated for the south pole residual cap. The deposit occurs within a stratigraphic unit that is uniquely marked by collapse features and other evidence of interior CO 2 volatile release. If released into the atmosphere at times of high obliquity, the CO 2 reservoir would increase the atmospheric mass by up to 80%, leading to more frequent and intense dust storms and to more regions where liquid water could persist without boiling.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2011
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature Geoscience, Springer Science and Business Media LLC, Vol. 13, No. 3 ( 2020-03), p. 183-189
    Type of Medium: Online Resource
    ISSN: 1752-0894 , 1752-0908
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2396648-8
    detail.hit.zdb_id: 2405323-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 42 ( 2022-10-18)
    Abstract: Constraining the thermal and compositional state of the mantle is crucial for deciphering the formation and evolution of Mars. Mineral physics predicts that Mars’ deep mantle is demarcated by a seismic discontinuity arising from the pressure-induced phase transformation of the mineral olivine to its higher-pressure polymorphs, making the depth of this boundary sensitive to both mantle temperature and composition. Here, we report on the seismic detection of a midmantle discontinuity using the data collected by NASA’s InSight Mission to Mars that matches the expected depth and sharpness of the postolivine transition. In five teleseismic events, we observed triplicated P and S waves and constrained the depth of this discontinuity to be 1,006 ± 40 km by modeling the triplicated waveforms. From this depth range, we infer a mantle potential temperature of 1,605 ± 100 K, a result consistent with a crust that is 10 to 15 times more enriched in heat-producing elements than the underlying mantle. Our waveform fits to the data indicate a broad gradient across the boundary, implying that the Martian mantle is more enriched in iron compared to Earth. Through modeling of thermochemical evolution of Mars, we observe that only two out of the five proposed composition models are compatible with the observed boundary depth. Our geodynamic simulations suggest that the Martian mantle was relatively cold 4.5 Gyr ago (1,720 to 1,860 K) and are consistent with a present-day surface heat flow of 21 to 24 mW/m 2 .
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 320, No. 5880 ( 2008-05-30), p. 1182-1185
    Abstract: The Shallow Radar (SHARAD) on the Mars Reconnaissance Orbiter has imaged the internal stratigraphy of the north polar layered deposits of Mars. Radar reflections within the deposits reveal a laterally continuous deposition of layers, which typically consist of four packets of finely spaced reflectors separated by homogeneous interpacket regions of nearly pure ice. The packet/interpacket structure can be explained by approximately million-year periodicities in Mars' obliquity or orbital eccentricity. The observed â¼100-meter maximum deflection of the underlying substrate in response to the ice load implies that the present-day thickness of an equilibrium elastic lithosphere is greater than 300 kilometers. Alternatively, the response to the load may be in a transient state controlled by mantle viscosity. Both scenarios probably require that Mars has a subchondritic abundance of heat-producing elements.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2008
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2001
    In:  Geophysical Research Letters Vol. 28, No. 22 ( 2001-11-15), p. 4267-4270
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 28, No. 22 ( 2001-11-15), p. 4267-4270
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2001
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...