GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Leukemia & Lymphoma, Informa UK Limited, Vol. 60, No. 4 ( 2019-03-21), p. 1098-1101
    Type of Medium: Online Resource
    ISSN: 1042-8194 , 1029-2403
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2019
    detail.hit.zdb_id: 2030637-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Clinical Investigation, American Society for Clinical Investigation, Vol. 127, No. 6 ( 2017-5-8), p. 2392-2406
    Type of Medium: Online Resource
    ISSN: 0021-9738 , 1558-8238
    Language: English
    Publisher: American Society for Clinical Investigation
    Publication Date: 2017
    detail.hit.zdb_id: 2018375-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cell Reports, Elsevier BV, Vol. 23, No. 11 ( 2018-06), p. 3127-3136
    Type of Medium: Online Resource
    ISSN: 2211-1247
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 2649101-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 104, No. 12 ( 2004-12-01), p. 3746-3753
    Abstract: The oncogenic BCR/ABL tyrosine kinase induces constitutive DNA damage in Philadelphia chromosome (Ph)-positive leukemia cells. We find that BCR/ABL-induced reactive oxygen species (ROSs) cause chronic oxidative DNA damage resulting in double-strand breaks (DSBs) in S and G2/M cell cycle phases. These lesions are repaired by BCR/ABL-stimulated homologous recombination repair (HRR) and nonhomologous end-joining (NHEJ) mechanisms. A high mutation rate is detected in HRR products in BCR/ABL-positive cells, but not in the normal counterparts. In addition, large deletions are found in NHEJ products exclusively in BCR/ABL cells. We propose that the following series of events may contribute to genomic instability of Ph-positive leukemias: BCR/ABL → ROSs → oxidative DNA damage → DSBs in proliferating cells → unfaithful HRR and NHEJ repair.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2004
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 110, No. 2 ( 2007-07-15), p. 651-660
    Abstract: Nbs1, a member of the Mre11-RAD50-Nbs1 complex, is phosphorylated by ATM, the product of the ataxia-telangiectasia mutated gene and a member of the phosphatidylinositol 3-kinase–related family of serine-threonine kinases, in response to DNA double-strand breaks (DSBs) to regulate DNA damage checkpoints. Here we show that BCR/ABL stimulated Nbs1 expression by induction of c-Myc–dependent transactivation and protection from caspase-dependent degradation. BCR/ABL-related fusion tyrosine kinases (FTKs) such as TEL/JAK2, TEL/PDGFβR, TEL/ABL, TEL/TRKC, BCR/FGFR1, and NPM/ALK as well as interleukin 3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and stem cell factor (SCF) also stimulated Nbs1 expression. Enhanced ATM kinase–dependent phosphorylation of Nbs1 on serine 343 (S343) in response to genotoxic treatment was detected in leukemia cells expressing BCR/ABL and other FTKs in comparison to normal counterparts stimulated with IL-3, GM-CSF, and SCF. Expression of Nbs1-S343A mutant disrupted the intra–S-phase checkpoint, decreased homologous recombinational repair (HRR) activity, down-regulated XIAP expression, and sensitized BCR/ABL-positive cells to cytotoxic drugs. Interestingly, inhibition of Nbs1 phosphorylation by S343A mutant enhanced the antileukemia effect of the combination of imatinib and genotoxic agent.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 104, No. 11 ( 2004-11-16), p. 2954-2954
    Abstract: BCR/ABL oncogenic tyrosine kinase activates STAT5, which plays as important role in leukemogenesis (Nieborowska-Skorska et al., J.Exp.Med., 189:1229,1999). We reported before that the bcl-2 family member A1 and the proto-oncogene pim-1, the two downstream effectors of STAT5, collaborate in BCR/ABL-positive cells to induce protection from apoptosis and growth factor independence (Nieborowska-Skorska et al., Blood, 99:4531,2002). We show here that expression of the helix-loop-helix protein Id1 is enhanced by BCR/ABL in the STAT5-dependent manner. This effect requires activation of STAT5 by the signaling from SH3+SH2 domains of BCR/ABL. Enhanced expression of Id1 played a key role in the BCR/ABL-mediated cell invasion in vitro, but not in protection from apoptosis in the absence of growth factors and in promotion of growth factor-independent proliferation. Leukemogenesis in mice was prolonged after injection of BCR/ABL-positive cells, in which Id-1 was downregulated by the antisence cDNA. In addition, infiltration of central nervous system (CNS) by leukemia cells was also reduced if Id-1 was inhibited. Id1 was responsible for BCR/ABL-induced production of MMP9 metalloproteinase. Abrogation of MMP9 catalytic activity by a selective inhibitor or blocking antibody decreased the invasive capability of leukemia cells. These data indicate that BCR/ABL→STAT5→Id1→MMP9 pathway may play a critical role in the BCR/ABL-dependent leukemogenesis by regulation of the invasive capability of leukemia cells. Moreover, this pathway may protect CML cells from imatinib mesylate (IM) by facilitation of their localization in CNS, a sanctuary for leukemia cells during IM therapy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2004
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 108, No. 11 ( 2006-11-01), p. 2127-2127
    Abstract: Growing evidence indicate that ABL kinase inhibitors may need partner drugs to cure BCR/ABL-positive leukemias. Genotoxic drugs have been successfully combined with imatinib mesylate to increase its anti-leukemia activity in vitro. Although BCR/ABL-positive cells may accumulate even higher levels of DNA damage in comparison to their normal counterparts the former cells repair the lesions more proficiently and eventually survive. Therefore, targeting the mechanisms responsible for survival of leukemia cells after genotoxic treatment may increase the chances to eradicate BCR/ABL-positive leukemias. Nbs1, a member of the Rad50/Mre11/Nbs1 complex, is phosphorylated by ATM on Serine 343 (S343) in response to DNA double strand breaks (DSBs) to regulate intra-S and G2/M cell cycle checkpoints and DNA repair. Here we show that BCR/ABL and other fusion tyrosine kinases (FTKs) such as TEL/ABL, TEL/JAK2, TEL/PDGFβR, TEL/TRKC, BCR/FGFR, and NPM/ALK, stimulate Nbs1 expression by protection from caspase-dependent degradation and induction of c-Myc-dependent transactivation. Downregulation of Nbs1 in BCR/ABL positive cells using siRNA increased their sensitivity to mitomycin C (MMC). Enhanced phosphorylation of Nbs1 on S343 (pNbs1) was detected by Western analysis in BCR/ABL-positive leukemia cells (CD34+ CML patient cells and leukemic cell lines) treated with various cytotoxic drugs (MMC, hydroxyurea = HU, cisplatin - CPL) in comparison to normal counterparts. This effect is associated with increased ATM kinase activity in BCR/ABL cells treated with MMC. In addition, immunofluoresence studies demonstrated an increase of the pNbs1 nuclear foci in BCR/ABL cells after MMC treatment in comparison to parental counterparts. DNA damage-dependent enhancement of pNbs1 appears to be a broad phenomenon because it was also detected in MMC-treated tumor cells expressing other FTKs. The radioresistant DNA synthesis (RDS) assay showed that MMC-treated CML patient cells and BCR/ABL-transformed cell lines displayed an inhibition of DNA synthesis associated with transient accumulation of the cells in S phase, indicating an intact intra-S phase checkpoint. Expression of the Nbs1-S343A phosphorylation-less mutant downregulated pNbs1 and disrupted intra-S phase checkpoint resulting in reduced accumulation of BCR/ABL leukemia cells in S phase after MMC treatment. This effect was associated with an increase of the sensitivity of leukemia cells to genotoxic treatment (MMC, HU, CPL). A combinatorial strategy was employed targeting enhanced Nbs1 phosphorylation and the deregulated BCR/ABL tyrosine kinase activity, using the Nbs1-S343A phosphorylation-less mutant and a sub-optimal concentration of STI571 eliminating ~50% of leukemia cells, respectively. Targeting both BCR/ABL kinase activity and Nbs1 phosphorylation in combination significantly sensitizes B/A-positive cells to MMC treatment, nearly eradicating all leukemia cells.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2006
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 4111-4111
    Abstract: Burkitt lymphoma/leukemia (BL) is a highly aggressive mature B-cell neoplasm characterized by chromosomal rearrangements of the c-myc oncogene resulting in the overexpression of MYC transcription factor. The most common translocation is the t(8;14)(q24;q32) (85% of all cases), which involves MYC and IGH loci to generate IGH/MYC. Deregulation of MYC, a potent proto-oncogene and transcriptional regulator contributes to lymphomagenesis through alterations in cell cycle regulation, and cell differentiation, apoptosis, adhesion, and metabolism. BL treatment consists of high-intensity chemotherapy protocols that include cyclophosphamide, cytarabine (AraC) and doxorubicin. Current therapies have achieved a very favorable outcome resulting in complete remission in 75% to 90% of BL patients and a survival rate of 70% to 80%. However the current treatment for BL is suboptimal in elderly patients or patients with advanced-stage diseased, in the setting of HIV infections, as well as in the setting of relapsed disease. Therefore new therapeutic strategies are necessary to improve the outcomes in BL diseases in the poor prognosis patients. It has been reported that overexpression of MYC caused accumulation of potentially lethal DNA double-strand breaks (DSBs), which can modulate the response of tumor cells to genotoxic treatment. Therefore, we examined the consequences of DSBs accumulation in IGH/MYC-positive BL cells. Here we show that untreated and cytarabine (AraC)-treated IGH/MYC-positive BL cells accumulate high number of potentially lethal DNA double-strand breaks (DSBs) and display downregulation of BRCA2 tumor suppressor protein, which is a key element of homologous recombination - mediated DSB repair. BRCA2 deficiency in IGH/MYC-positive cells was associated with hypersensitivity to PARP1 inhibitors (olaparib, talazoparib) used alone or in combination with cytarabine in vitro. Moreover, talazoparib exerted a therapeutic effect in NGS mice bearing primary BL xenografts. In conclusion, we postulate that BRCA2 deficiency may predispose BL cells to synthetic lethality triggered by PARP1 inhibitor, such as recently FDA approved olaparib. Moreover, PARP1 inhibitor may be useful for the treatment of other malignancies associated with deregulation of MYC, including diffuse large B-cell lymphoma (DLBCL) and ALK-positive LBCL. Disclosures Wasik: Gilead Sciences: Equity Ownership; Seattle Genetics: Honoraria; Novartis: Research Funding; University of Pennsylvania: Patents & Royalties: NPM-ALK as an omncogene; University of Pennsylvania: Patents & Royalties: CAR T-cells; Gilead Sciences: Research Funding; Pharmacyclics: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 447-447
    Abstract: Abstract 447 BCR-ABL1 transforms hematopoietic stem cells (HSCs) into leukemia stem cells (LSCs) to induce chronic myeloid leukemia in chronic phase (CML-CP). We detected that the most primitive LSCs display elevated levels of reactive oxygen species (ROS) and accumulate excessive numbers of potentially lethal DNA double-strand breaks (DSBs). We also reported that BCR-ABL1-transformed cells exhibit enhanced RAD51-mediated homologous recombination repair (HRR) activity occurring in S and G2/M cell cycle phases. In normal cells initiation of RAD51-mediated HRR is directed either by BRCA1– or RAD52–dependent mechanisms. Since BCR-ABL1 kinase downregulated BRCA1, LSCs containing high number of DSBs should depend more on RAD52 to promote HRR to repair lethal DSBs. We found that in vivo leukemogenic potential of BCR-ABL1 –positive RAD52−/− hematopoietic cells is abrogated in comparison to their BCR-ABL1 -positive RAD52+/+ counterparts. The absence of RAD52 in BCR-ABL1 –positive cells reduced the percentage of Lin−Kit+Sca1+ cells by 〉 2-fold and inhibited their clonogenic potential and proliferation by 〉 10-fold. In addition RAD52 knockout caused approximately 2-fold reduction of Lin−Kit+Sca1+CD34−Flt3− long-term LSCs (LT-LSCs) and Lin−Kit+Sca1+CD34+Flt3− short-term LSCs (ST-LSCs). Conversely, 4-fold accumulation of BCR-ABL1 –positive RAD52−/− Lin−Kit+Sca1+eFluor670max quiescent cells was detected in comparison to BCR-ABL1 –positive RAD52+/+ counterparts. These effects were accompanied by 2-fold reduction of the percentage of BCR-ABL1 –positive RAD52−/− cells in S and G2/M and 7-fold increase of these cells in sub-G1 when compared to BCR-ABL1 –positive RAD52+/+ counterparts. BCR-ABL1-positive RAD52−/− Lin−Kit+Sca1+ cells accumulated more DSBs than BCR-ABL1 –positive RAD52+/+ cells. These differences were not observed between non-transformed RAD52−/− and RAD52+/+ cells. Expression of the wild-type RAD52 reduced the accumulation of lethal DSBs and rescued the clonogenic potential and proliferation of BCR-ABL1-positive RAD52−/− Lin−Kit+Sca1+ cells. Downregulation of ROS with antioxidants vitamin E (VE) and N-acetyl-cysteine (NAC) exerted similar effect as restored expression of RAD52. Thus it appears that RAD52 is necessary to repair the extensive ROS-induced DSBs in LSC-enriched Lin−Kit+Sca1+ cells. BCR-ABL1 kinase does not affect the expression of RAD52 protein, but phosphorylates RAD52 on Y104. However, expression of RAD52(Y104F) phosphorylation-less mutant reduced the number of DSBs and rescued the clonogenic potential of BCR-ABL1-positive RAD52−/− Lin−Kit+Sca1+ cells in a similar way to the wild-type RAD52. Accordingly, RAD52-mediated DSB repair activity in CML-CP cells should not be affected by imatinib treatment. RAD52 mediates the annealing of complementarry DNA strands during DSB repair. To exert this function RAD52 has two DNA binding domains. Expression of RAD52(F79A) and RAD52(K102A) DNA binding-deficient mutants (each amino acid substitution inactivated different DNA binding domain) failed to prevent the accumulation of DSBs and did not rescue the clonogenic and proliferative potential of BCR-ABL1-positive RAD52−/− cells. In addition, RAD52(F79A), but not RAD52(Y104F) inhibited DSB repair by HRR. Therefore DNA binding capability of RAD52 appears essential for BCR-ABL1 –mediated leukemogenesis, but it is dispensable in normal hematopoietic cells. The “addiction” of BCR-ABL1 leukemia cells to RAD52 was confirmed by demonstration that RAD52(F79A) mutant inhibited clonogenic potential of CD34+ CML-CP cells, but not normal counterparts. Furthermore, to determine if RAD52 DNA binding domains could be targeted to selectively inhibit CML-CP, peptide aptamers containing RAD52 DNA binding domain amino acids sequence surrounding F79 were employed as potential decoys for RAD52 DNA binding. Aptamer containing F79, but not the A79 substitution, diminished the number of RAD52 foci and reduced the clonogenic potential and proliferation of CD34+ cells from CML-CP, but not from normal donors. In conclusion, we postulate that RAD52 is essential for BCR-ABL1 –mediated leukemogenesis and that DNA binding domains of RAD52 may be targeted for selective elimination of the proliferating CML-CP LSCs. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 909-909
    Abstract: Abstract 909 Genomic instability is a hallmark of chronic myeloid leukemia in chronic phase (CML-CP) resulting in the appearance of clones carrying BCR-ABL1 kinase mutations encoding resistance to tyrosine kinase inhibitors (TKIs) and/or those harboring additional chromosomal aberrations, eventually leading to disease relapse and/or malignant progression to blast phase (CML-BP) [Skorski, T., Leukemia and Lymphoma, 2011]. We found that Lin−CD34+CD38− human leukemia stem cells (huLSCs), including the quiescent sub-population, and Lin−CD34+CD38+ human leukemia progenitor cells (huLPCs) accumulate high levels of reactive oxygen species (ROS) resulting in numerous oxidative DNA lesions such as 8-oxoguanine (8-oxoG) and DNA double-strand breaks (DSBs) [Nieborowska-Skorska, Blood, 2012] . huLSCs and huLPCs treated with TKIs continue to exhibit ROS-induced oxidative DNA damage suggesting the persistence of genomic instability in TKI-treated patients. Furthermore, genomic instability in TKI-refractory huLSCs and TKI-sensitive huLPCs may have a varying impact on disease progression and determining novel treatment modalities. To determine if TKI-refractory huLSCs are a source of genomic instability we employed a tetracycline-inducible murine model of CML-CP: SCLtTA/p210BCR-ABL1. Mice exhibiting CML-CP -like disease demonstrated splenomegaly, leukocytosis, and expansion of mature Gr1+/CD11b+ cells. ROS were elevated in Lin−c-Kit+Sca-1+ cells (muLSCs), but not Lin−c-Kit+Sca-1− cells (muLPCs), which was associated with higher mRNA expression of BCR-ABL1 in muLSCs. In addition, ROS levels were directly proportional to BCR-ABL1 kinase expression in transduced CD34+ human hematopoietic cells, thus confirming the “dosage-dependent” effect of BCR-ABL1 on ROS. Among the Lin−c-Kit+Sca-1+ cells, enhanced ROS were detected in TKI-refractory quiescent muLSCs, in CD34−Flt3− long-term and CD34+Flt3− short-term muLSCs, and also in CD34+Flt3+ multipotent progenitors. High levels of ROS in muLSCs were accompanied by aberrant expression of genes regulating ROS metabolism (mitochondrial electron transport, oxidative phosphorylation, hydrogen peroxide synthesis, and detoxification). In addition, muLSCs, including the quiescent sub-population, displayed high levels of oxidative DNA lesions (8-oxoG, and DSBs). ROS-induced oxidative DNA damage in muLSCs was accompanied by genomic instability in CML-CP –like mice, which accumulated a broad range of genetic aberrations recapitulating the heterogeneity of sporadic mutations detected in TKI-naive CML-CP patients. These aberrations include TKI-resistant BCR-ABL1 kinase mutations, deletions in Ikzf1 and Trp53 and additions in Zfp423 and Idh1 genes, which have been associated with CML-CP relapse and progression to CML-BP. Imatinib caused only modest inhibition of ROS and oxidative DNA damage in TKI-refractory muLSCs. In concordance, CML-CP –like mice treated with imatinib continued to accumulate genomic aberrations. Since BCR-ABL1(K1172R) kinase-dead mutant expressed in CD34+ human hematopoietic cells did not enhance ROS, it suggests that BCR-ABL1 kinase-independent mechanisms contribute to genomic instability. In summary, we postulate that ROS-induced oxidative DNA damage resulting in genetic instability may originate in the most primitive TKI-refractory huLSCs in TKI-naive and TKI-treated patients. Disclosures: Lange: Novartis: Honoraria, Research Funding. Müller:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Koschmieder:Novartis / Novartis Foundation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...