GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Sustainability, MDPI AG, Vol. 14, No. 10 ( 2022-05-11), p. 5825-
    Abstract: Inadequate nutrient management is one of the major challenges for sustainable soybean production in semi-arid climatic conditions. Hence, a 3-year (2015–2017) field experiment was conducted to assess the effect of foliar application of macro- and micronutrients on the growth, productivity, and profitability of soybean. Eight foliar nutrient sprays at the pod initiation stage—water spray (WS), 2% urea solution, 2% di-ammonium phosphate solution (DAP2%), 0.5% muriate of potash solution (MOP0.5%), 2% solution of 19:19:19 nitrogen phosphorus and potassium (NPK2%), and a 0.5% solution each of molybdenum (Mo0.5%), boron (B0.5%), chelated-zinc (Zn 0.5%) and no-foliar nutrition (NFN)—were compared with a basal-applied recommended dose of fertilizers (RDF: 30 kg N, 75 kg P, and 40 kg K ha−1) in a randomized block design (RBD), replicated three times. Foliar-applied chelated Zn@0.5% (Zn0.5%) at the pod initiation stage resulted in more pods per plants. In addition to Zn0.5%, urea2%, NPK2%, and B0.5% significantly improved the pods per plant over treatment by no-foliar nutrition (NFN). The RDF-supplied soybean subsequently sprayed with Zn0.5% produced the highest seed yield, which was 18.5–37.8% higher than that of NFN treatment Yield improvement due to the application of B0.5%, DAP2%, and urea2% varied between 19.2–23.7, 16.6–20.4 and 18.6–20%, respectively. Foliar nutrition showed the largest net returns from Zn0.5%. The water-use efficiency (WUE) and production efficiency increased by 18.4–37.6 and 34.9–37.5%, respectively, due to Zn0.5% over the efficiencies from NFN treatment. Monetary efficiency (ME) gains due to Zn0.5% were 24% higher, while ME efficiency gains due to urea2%, NPK2%, and B0.5% varied between 15–16%. Thus, this study suggested that the foliar application of 0.5% Zn and B, urea, NPK fertilizer, and DAP at 2%, along with RDF. is a profitable nutrient management option for quality soybean production in a semiarid region. However, nutrient partitioning, changes in soil chemical and biological indicators, and environmental aspects need critical examination in future studies.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Plants, MDPI AG, Vol. 11, No. 7 ( 2022-03-30), p. 943-
    Abstract: Yield limitation and widespread sulphur (S) deficiency in pearl-millet-nurturing dryland soils has emerged as a serious threat to crop productivity and quality. Among diverse pathways to tackle moisture and nutrient stress in rainfed ecologies, conservation agriculture (CA) and foliar nutrition have the greatest potential due to their economic and environmentally friendly nature. Therefore, to understand ammonium thiosulphate (ATS)-mediated foliar S nutrition effects on yield, protein content, mineral biofortification, and sulphur economy of rainfed pearl millet under diverse crop establishment systems, a field study was undertaken. The results highlighted that pearl millet grain and protein yield was significantly higher under no-tillage +3 t/ha crop residue mulching (NTCRM) as compared to no-tillage without mulch (NoTill) and conventional tillage (ConvTill), whereas the stover yield under NTCRM and ConvTill remained at par. Likewise, grain and stover yield in foliar S application using ATS 10 mL/L_twice was 19.5% and 13.2% greater over no S application. The sulphur management strategy of foliar-applied ATS 10 mL/L_twice resulted in significant improvement in grain protein content, protein yield, micronutrient fortification, and net returns (₹ 54.6 × 1000) over the control. Overall, ATS-mediated foliar S nutrition can be an alternate pathway to S management in pearl millet for yield enhancement, micronutrient biofortification and grain protein content increase under ConvTill, as well as under the new NTCRM systems.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Excellent Publishers ; 2019
    In:  International Journal of Current Microbiology and Applied Sciences Vol. 8, No. 02 ( 2019-02-20), p. 554-565
    In: International Journal of Current Microbiology and Applied Sciences, Excellent Publishers, Vol. 8, No. 02 ( 2019-02-20), p. 554-565
    Type of Medium: Online Resource
    ISSN: 2319-7692 , 2319-7706
    URL: Issue
    Language: Unknown
    Publisher: Excellent Publishers
    Publication Date: 2019
    detail.hit.zdb_id: 2697628-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Nutrition, Frontiers Media SA, Vol. 10 ( 2023-8-21)
    Abstract: Micronutrient malnutrition and suboptimal yields pose significant challenges in rainfed cropping systems worldwide. To address these issues, the implementation of climate-smart management strategies such as conservation agriculture (CA) and system intensification of millet cropping systems is crucial. In this study, we investigated the effects of different system intensification options, residue management, and contrasting tillage practices on pearl millet yield stability, biofortification, and the fatty acid profile of the pearl millet. ZT systems with intercropping of legumes (cluster bean, cowpea, and chickpea) significantly increased productivity (7–12.5%), micronutrient biofortification [Fe (12.5%), Zn (4.9–12.2%), Mn (3.1–6.7%), and Cu (8.3–16.7%)], protein content (2.2–9.9%), oil content (1.3%), and fatty acid profile of pearl millet grains compared to conventional tillage (CT)-based systems with sole cropping. The interactive effect of tillage, residue retention, and system intensification analyzed using GGE statistical analysis revealed that the best combination for achieving stable yields and micronutrient fortification was residue retention in both (wet and dry) seasons coupled with a ZT pearl millet + cowpea–mustard (both with and without barley intercropping) system. In conclusion, ZT combined with residue recycling and legume intercropping can be recommended as an effective approach to achieve stable yield levels and enhance the biofortification of pearl millet in rainfed agroecosystems of South Asia.
    Type of Medium: Online Resource
    ISSN: 2296-861X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2776676-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-03-25)
    Abstract: Micronutrient malnutrition or hidden hunger remains a major global challenge for human health and wellness. The problem results from soil micro- and macro-nutrient deficiencies combined with imbalanced fertilizer use. Micronutrient-embedded NPK (MNENPK) complex fertilizers have been developed to overcome the macro- and micro-element deficiencies to enhance the yield and nutritive value of key crop products. We investigated the effect of foliar applications of an MNENPK fertilizer containing N, P, K, Fe, Zn and B in combination with traditional basal NPK fertilizers in terms of eggplant yield, fruit nutritive quality and on soil biological properties. Applying a multi-element foliar fertilizer improved the nutritional quality of eggplant fruit, with a significant increases in the concentration of Fe (+ 26%), Zn (+ 34%), K (+ 6%), Cu (+ 24%), and Mn (+ 27%), all of which are essential for human health. Increasing supply of essential micronutrients during the plant reproductive stages increased fruit yield, as a result of improved yield parameters. The positive effect of foliar fertilizing with MNENPK on soil biological parameters (soil microbial biomass carbon, dehydrogenase, alkaline phosphatase) also demonstrated its capacity to enhance soil fertility. This study suggests that foliar fertilizing with a multi-nutrient product such as MNENPK at eggplant flowering and fruiting stages, combined with the recommended-doses of NPK fertilizers is the optimal strategy to improve the nutritional quality of eggplant fruits and increase crop yields, both of which will contribute to reduce micronutrient malnutrition and hunger globally.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Diagnostics, MDPI AG, Vol. 12, No. 11 ( 2022-11-12), p. 2766-
    Abstract: In the COVID-19 era, it may be possible to detect COVID-19 by detecting lesions in scans, i.e., ground-glass opacity, consolidation, nodules, reticulation, or thickened interlobular septa, and lesion distribution, but it becomes difficult at the early stages due to embryonic lesion growth and the restricted use of high dose X-ray detection. Therefore, it may be possible for a patient who may or may not be infected with coronavirus to consider using high-dose X-rays, but it may cause more risks. Conclusively, using low-dose X-rays to produce CT scans and then adding a rigorous denoising algorithm to the scans is the best way to protect patients from side effects or a high dose X-ray when diagnosing coronavirus involvement early. Hence, this paper proposed a denoising scheme using an NLM filter and method noise thresholding concept in the shearlet domain for noisy COVID CT images. Low-dose COVID CT images can be further utilized. The results and comparative analysis showed that, in most cases, the proposed method gives better outcomes than existing ones.
    Type of Medium: Online Resource
    ISSN: 2075-4418
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662336-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Biology, MDPI AG, Vol. 11, No. 11 ( 2022-11-01), p. 1599-
    Abstract: Chenopodium album L. and Chenopodium murale L. are two principal weed species, causing substantial damage to numerous winter crops across the globe. For sustainable and resource-efficient management strategies, it is important to understand weeds’ germination behaviour under diverse conditions. For the germination investigations, seeds of both species were incubated for 15 days under different temperatures (10–30 °C), salinity (0–260 mM NaCl), osmotic stress (0–1 MPa), pH (4–10), and heating magnitudes (50–200 °C). The results indicate that the germination rates of C. album and C. murale were 54–95% and 63–97%, respectively, under a temperature range of 10 to 30 °C. The salinity levels for a 50% reduction in the maximum germination (GR50) for C. album and C. murale were 139.9 and 146.3 mM NaCl, respectively. Regarding osmotic stress levels, the GR50 values for C. album and C. murale were 0.44 and 0.43 MPa, respectively. The two species showed 〉 95% germination with exposure to an initial temperature of 75 °C for 5 min; however, seeds exposed to 100 °C and higher temperatures did not show any germination. Furthermore, a drastic reduction in germination was observed when the pH was less than 6.0 and greater than 8.0. The study generated information on the germination biology of two major weed species under diverse ecological scenarios, which may be useful in developing efficient weed management tactics for similar species in future agri-food systems.
    Type of Medium: Online Resource
    ISSN: 2079-7737
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661517-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Applied Sciences Vol. 13, No. 13 ( 2023-06-28), p. 7673-
    In: Applied Sciences, MDPI AG, Vol. 13, No. 13 ( 2023-06-28), p. 7673-
    Abstract: Digital imaging is a technology that is extensively employed in diverse diagnostic examinations such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound imaging, among other modalities. Transferring a patient’s diagnostic images and medical data to a specialist physician in a distinct geographical location is conducted to facilitate an accurate diagnosis. The safeguarding of patient data privacy and confidentiality is ensured through the utilisation of smart hospital applications for medical data security. The current research presents the effective utilisation of lifting wavelet transform (LWT) and Hessenberg-based particle swarm optimization in order to generate resilient and safeguarded watermarks on ultrasound images. The empirical evidence suggests that our innovative approach outperforms our prior methodology, established through extensive testing. The watermark’s imperceptibility and accuracy are exemplified by its capacity to sustain a superior structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR), even amidst diverse image processing assaults.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Sensors, MDPI AG, Vol. 23, No. 19 ( 2023-09-26), p. 8090-
    Abstract: This research paper introduces a novel paradigm that synergizes innovative algorithms, namely efficient data encryption, the Quondam Signature Algorithm (QSA), and federated learning, to effectively counteract random attacks targeting Internet of Things (IoT) systems. The incorporation of federated learning not only fosters continuous learning but also upholds data privacy, bolsters security measures, and provides a robust defence mechanism against evolving threats. The Quondam Signature Algorithm (QSA) emerges as a formidable solution, adept at mitigating vulnerabilities linked to man-in-the-middle attacks. Remarkably, the QSA algorithm achieves noteworthy cost savings in IoT communication by optimizing communication bit requirements. By seamlessly integrating federated learning, IoT systems attain the ability to harmoniously aggregate and analyse data from an array of devices while zealously guarding data privacy. The decentralized approach of federated learning orchestrates local machine-learning model training on individual devices, subsequently amalgamating these models into a global one. Such a mechanism not only nurtures data privacy but also empowers the system to harness diverse data sources, enhancing its analytical capabilities. A thorough comparative analysis scrutinizes varied cost-in-communication schemes, meticulously weighing both encryption and federated learning facets. The proposed approach shines by virtue of its optimization of time complexity through the synergy of offline phase computations and online phase signature generation, hinged on an elliptic curve digital signature algorithm-based online/offline scheme. In contrast, the Slow Block Move (SBM) scheme lags behind, necessitating over 25 rounds, 1500 signature generations, and an equal number of verifications. The proposed scheme, fortified by its marriage of federated learning and efficient encryption techniques, emerges as an embodiment of improved efficiency and reduced communication costs. The culmination of this research underscores the intrinsic benefits of the proposed approach: marked reduction in communication costs, elevated analytical prowess, and heightened resilience against the spectrum of attacks that IoT systems confront.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Sustainability, MDPI AG, Vol. 14, No. 6 ( 2022-03-21), p. 3657-
    Abstract: Rice-based cropping systems (RBCS) are a kingpin of global food security and rice fallow is one of the largest ( 〉 14 m ha) RBCS. A three-year study was carried out to develop sustainable intensification options and efficient nutrient management protocols of RBCS with greater water and energy productivity and more profits. Rice-lentil, rice-linseed and rice-rapeseed systems were tested in a split-plot design with nutrient management practices involving fertilizer levels (50%, 75% and 100% recommended fertilizer dose; RDF), green manuring with Sesbania (SGM) and rice residue incorporation (RRI). The results indicated that SGM produced significantly better rice productivity, enhanced 6.4–22.7% yield of succeeding crops and increased profits by ~20%. Application of 75 or 100% of RDF produced 24.5–30.3% higher grain yield of rabi crops. System intensification resulted in an additional rice equivalent yield (REY) of ~1–1.6 t ha−1. SGM consumed relatively more energy (76,793 MJ ha−1) but at the same time, resulted in higher energy output (182,657 MJ ha−1), net energy (105,864 MJ ha−1), energy intensity (1.68 MJ INR−1) and human energy profitability (787) than the RRI. However, RRI recorded a higher energy ratio (2.42), energy productivity (0.082 kg MJ−1) and energy profitability (1.42 kg MJ−1). The rice-linseed cropping system resulted in greater system productivity, higher energy output (186,305 MJ ha−1) and net energy (112,029 MJ ha−1) than other systems. Overall, considering energy productivity, resource-use efficiency and profits, a rice-linseed system coupled with SGM and 75% RDF may be recommended as a sustainable intensification option in RBCS.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...