GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    In: Leukemia, Springer Science and Business Media LLC, Vol. 32, No. 10 ( 2018-10), p. 2126-2137
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: JAMA Neurology, American Medical Association (AMA), Vol. 80, No. 1 ( 2023-01-01), p. 99-
    Abstract: The Stroke of Known Cause and Underlying Atrial Fibrillation (STROKE AF) trial found that approximately 1 in 8 patients with recent ischemic stroke attributed to large- or small-vessel disease had poststroke atrial fibrillation (AF) detected by an insertable cardiac monitor (ICM) at 12 months. Identifying predictors of AF could be useful when considering an ICM in routine poststroke clinical care. Objective To determine the association between commonly assessed risk factors and poststroke detection of new AF in the STROKE AF cohort monitored by ICM. Design, Setting, and Participants This was a prespecified analysis of a randomized (1:1) clinical trial that enrolled patients between April 1, 2016, and July 12, 2019, with primary follow-up through 2020 and mean (SD) duration of 11.0 (3.0) months. Eligible patients were selected from 33 clinical research sites in the US. Patients had an index stroke attributed to large- or small-vessel disease and were 60 years or older or aged 50 to 59 years with at least 1 additional stroke risk factor. A total of 496 patients were enrolled, and 492 were randomly assigned to study groups (3 did not meet inclusion criteria, and 1 withdrew consent). Patients in the ICM group had the index stroke within 10 days before insertion. Data were analyzed from October 8, 2021, to January 28, 2022. Interventions ICM monitoring vs site-specific usual care (short-duration external cardiac monitoring). Main Outcomes and Measures The ICM device automatically detects AF episodes 2 or more minutes in length; episodes were adjudicated by an expert committee. Cox regression multivariable modeling included all parameters identified in the univariate analysis having P values & amp;lt;.10. AF detection rates were calculated using Kaplan-Meier survival estimates. Results The analysis included the 242 participants randomly assigned to the ICM group in the STROKE AF study. Among 242 patients monitored with ICM, 27 developed AF (mean [SD] age, 66.6 [9.3] years; 144 men [60.0%]; 96 [40.0%] women). Two patients had missing baseline data and exited the study early. Univariate predictors of AF detection included age (per 1-year increments: hazard ratio [HR], 1.05; 95% CI, 1.01-1.09; P  = .02), CHA 2 DS 2 -VASc score (per point: HR, 1.54; 95% CI, 1.15-2.06; P  = .004), chronic obstructive pulmonary disease (HR, 2.49; 95% CI, 0.86-7.20; P  = .09), congestive heart failure (CHF; with preserved or reduced ejection fraction: HR, 6.64; 95% CI, 2.29-19.24; P   & amp;lt; .001), left atrial enlargement (LAE; HR, 3.63; 95% CI, 1.55-8.47; P  = .003), QRS duration (HR, 1.02; 95% CI, 1.00-1.04; P  = .04), and kidney dysfunction (HR, 3.58; 95% CI, 1.35-9.46; P  = .01). In multivariable modeling (n = 197), only CHF (HR, 5.06; 95% CI, 1.45-17.64; P  = .05) and LAE (HR, 3.32; 1.34-8.19; P  = .009) remained significant predictors of AF. At 12 months, patients with CHF and/or LAE (40 of 142 patients) had an AF detection rate of 23.4% vs 5.0% for patients with neither (HR, 5.1; 95% CI, 2.0-12.8; P   & amp;lt; .001). Conclusions and Relevance Among patients with ischemic stroke attributed to large- or small-vessel disease, CHF and LAE were associated with a significantly increased risk of poststroke AF detection. These patients may benefit most from the use of ICMs as part of a secondary stroke prevention strategy. However, the study was not powered for clinical predictors of AF, and therefore, other clinical characteristics may not have reached statistical significance. Trial Registration ClinicalTrials.gov Identifier: NCT02700945
    Type of Medium: Online Resource
    ISSN: 2168-6149
    Language: English
    Publisher: American Medical Association (AMA)
    Publication Date: 2023
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2012
    In:  American Journal of Medical Quality Vol. 27, No. 6 ( 2012-11), p. 487-493
    In: American Journal of Medical Quality, Ovid Technologies (Wolters Kluwer Health), Vol. 27, No. 6 ( 2012-11), p. 487-493
    Type of Medium: Online Resource
    ISSN: 1062-8606 , 1555-824X
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2012
    detail.hit.zdb_id: 2181248-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 379, No. 6632 ( 2023-02-10)
    Abstract: Multisystem inflammatory syndrome in children (MIS-C) is a severe, unexplained complication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with an estimated prevalence of ~1 per 10,000 infected children. It typically occurs 4 weeks after infection, without hypoxemic pneumonia. Affected children present with fever, rash, abdominal pain, myocarditis, and other clinical features reminiscent of Kawasaki disease, including lymphadenopathy, coronary aneurysm, and high levels of biological markers of acute inflammation. Sustained monocyte activation is consistently reported as a key immunological feature of MIS-C. A more specific immunological abnormality is the polyclonal expansion of CD4 + and CD8 + T cells bearing the T cell receptor Vβ21.3. The root cause of MIS-C and its immunological and clinical features remains unknown. RATIONALE We hypothesized that monogenic inborn errors of immunity to SARS-CoV-2 may underlie MIS-C in some children. We further hypothesized that the identification of these inborn errors would provide insights into the molecular and cellular mechanisms underlying its immunological and clinical phenotypes. Finally, we hypothesized that a genetic and mechanistic understanding of a few patients would provide a proof of principle that would facilitate studies in other patients. We performed whole-exome or whole-genome sequencing on 558 internationally recruited patients with MIS-C (aged 3 months to 19 years). We searched for rare nonsynonymous biallelic variants of protein-coding genes, testing a hypothesis of genetic homogeneity. RESULTS We found autosomal recessive deficiencies of OAS1 (2′-5′-oligoadenylate synthetase 1), OAS2, or RNase L (ribonuclease L) in five unrelated children of four different ancestries with MIS-C (~1% of our cohort). There were no similar defects in a cohort of 1288 individuals (aged 6 months to 99 years) with asymptomatic or mild infection ( P = 0.001) or 334 young patients (aged 0 to 21 years) with asymptomatic or mild infection or COVID-19 pneumonia ( P = 0.046). The estimated cumulative frequency of these defects in the general population was ~0.00013. The type I interferon (IFN)–inducible double-stranded RNA (dsRNA)–sensing proteins OAS1 and OAS2 generate 2′-5′-linked oligoadenylates (2-5A), which activate the antiviral single-stranded RNA (ssRNA)–degrading RNase L, particularly in mononuclear phagocytes. Consistent with the absence of pneumonia in these patients, epithelial cells and fibroblasts defective for this pathway restricted SARS-CoV-2 normally. This contrasted with interferon alpha and beta receptor subunit 1 (IFNAR1)–deficient cells from patients prone to hypoxemic pneumonia without MIS-C. Monocytic cell lines with genetic deficiencies of OAS1, OAS2, or RNase L displayed excessive inflammatory cytokine production in response to intracellular dsRNA. Cytokine production by RNase L–deficient cells was impaired by melanoma differentiation-associated protein 5 (MDA5) or retinoic acid–inducible gene I (RIG-I) deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Exogenous 2-5A suppressed inflammatory responses to these stimuli in control and OAS1-deficient cells but not in RNase L–deficient cells. Finally, monocytic cell lines, primary monocytes, and monocyte-derived dendritic cells with genetic deficiencies of OAS1, OAS2, or RNase L displayed exaggerated inflammatory responses to SARS-CoV-2 as well as SARS-CoV-2–infected cells and their RNA. CONCLUSION We report autosomal recessive deficiencies of OAS1, OAS2, or RNase L in ∼1% of an international cohort of MIS-C patients. The cytosolic OAS–RNase L pathway suppresses RIG-I/MDA5–MAVS–mediated inflammation in dsRNA-stimulated mononuclear phagocytes. Single-gene recessive inborn errors of the OAS–RNase L pathway unleash the production of SARS-CoV-2–triggered inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C. OAS–RNase L deficiency in MIS-C. dsRNAs from SARS-CoV-2 or SARS-CoV-2–permissive cells engulfed by mononuclear phagocytes simultaneously activate the RIG-I/MDA5–MAVS pathway, inducing inflammatory cytokine production, and the OAS–RNase L pathway, exerting posttranscriptional control over inflammatory cytokine production. OAS–RNase L deficiency results in excessive inflammatory cytokine production by myeloid cells, triggering MIS-C, including lymphoid cell activation and multiple tissue lesions. NK, natural killer; IRF3, interferon regulatory factor 3; NF-κB, nuclear factor κB.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Radiological Society of North America (RSNA) ; 2000
    In:  Radiology Vol. 216, No. 1 ( 2000-07), p. 180-184
    In: Radiology, Radiological Society of North America (RSNA), Vol. 216, No. 1 ( 2000-07), p. 180-184
    Type of Medium: Online Resource
    ISSN: 0033-8419 , 1527-1315
    RVK:
    Language: English
    Publisher: Radiological Society of North America (RSNA)
    Publication Date: 2000
    detail.hit.zdb_id: 80324-8
    detail.hit.zdb_id: 2010588-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Abdominal Radiology, Springer Science and Business Media LLC, Vol. 42, No. 4 ( 2017-4), p. 1229-1240
    Type of Medium: Online Resource
    ISSN: 2366-004X , 2366-0058
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2845742-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 23, No. 24_Supplement ( 2017-12-15), p. PR14-PR14
    Abstract: The tendency of mitochondria to undergo or resist BCL2-controlled apoptosis (so-called mitochondrial priming) is a powerful predictor of the outcome of cytotoxic chemotherapy for cancer. To fully exploit this finding, it will be important to understand the molecular genetic contexts responsible for the relative mitochondrial priming of chemotherapy-sensitive versus resistant cell populations. Here we report that mitochondrial apoptosis resistance in T-cell acute lymphoblastic leukemia (T-ALL) is mediated by inactivation of polycomb repressive complex 2 (PRC2) and consequent downstream upregulation of the TRAP1 gene, which encodes a mitochondrial chaperone protein of the HSP90 family. In clinical samples from 47 T-ALL patients, we found that loss-of-function mutations in any of three core components of PRC2 (EZH2, EED or SUZ12) were associated with resistance to mitochondrial apoptosis, as assessed by BH3 profiling (P = 0.015). In human T-ALL cells, PRC2 depletion induced resistance to mitochondrial apoptosis induction, as assessed by caspase 3/7 activation or annexin V/PI staining, in response to multiple antileukemic drugs with distinct mechanisms of action, including dexamethasone, doxorubicin, vincristine, and asparaginase (P & lt; 0.01). In mouse immature T-cell progenitors, haploinsufficiency for the PRC2 components Ezh2 or Eed was sufficient to induce resistance to mitochondrial apoptosis, as assessed by BH3 profiling analysis (P ≤ 0.01). PRC2 is a histone-modifying complex whose activity is strongly associated with transcriptional repression. We found that PRC2 represses transcription of TRAP1, a nuclearly encoded, mitochondrially localized chaperone of the HSP90 family. Importantly, TRAP1 overexpression was necessary to induce resistance to chemotherapy-induced apoptosis downstream of PRC2 inactivation (P & lt; 0.001), while pharmacologic inhibition of TRAP1 synergized with antileukemic drugs in PRC2-deficient leukemic cells. These findings demonstrate the importance of relative mitochondrial apoptotic priming as a prognostic factor in T-ALL, and implicate mitochondrial chaperone function as a molecular determinant of response to cancer chemotherapy, suggesting a rationale for targeted therapeutic intervention. This abstract is also being presented as Poster 07. Citation Format: Ingrid Aries, Triona Ni Chonghaile, Salmaan Karim, Sebastian Balbach, Melissa Burns, Gayle Pouliot, Stevenson Kristen, Donna Neuberg, Meenakshi Devidas, Loh Mignon, Stephen Hunger, Stuart Winter, David Teachey, Karen Rabin, Kimberly Dunsmore, Brent Wood, Lewis Silverman, Stephen Sallan, Peter Van Vlierberghe, Stuart H. Orkin, Anthony G. Letai, Alejandro Gutierrez. Polycomb repressive complex 2 inactivation induces primary chemotherapy resistance in T-ALL by upregulating the TRAP1 mitochondrial chaperone [abstract]. In: Proceedings of the Second AACR Conference on Hematologic Malignancies: Translating Discoveries to Novel Therapies; May 6-9, 2017; Boston, MA. Philadelphia (PA): AACR; Clin Cancer Res 2017;23(24_Suppl):Abstract nr PR14.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Urology, Elsevier BV, Vol. 78, No. 1 ( 2011-07), p. 93-98
    Type of Medium: Online Resource
    ISSN: 0090-4295
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2011
    detail.hit.zdb_id: 2011025-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of the American Heart Association, Ovid Technologies (Wolters Kluwer Health), Vol. 5, No. 11 ( 2016-10-26)
    Type of Medium: Online Resource
    ISSN: 2047-9980
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2016
    detail.hit.zdb_id: 2653953-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 889-889
    Abstract: The tendency of mitochondria to undergo or resist BCL2-controlled apoptosis (so-called mitochondrial priming) is a powerful predictor of response to cytotoxic chemotherapy. Fully exploiting this finding will require unraveling the molecular genetics underlying phenotypic variability in mitochondrial priming. We analyzed pre-treatment T-ALL clinical specimens from a cohort of 47 patients (enriched for treatment failure, but with sufficient controls) treated on the COG AALL0434 or DFCI 05001 clinical trials using BH3 profiling analysis to assess mitochondrial apoptotic priming. We found that there was a strong association between resistance to mitochondrial apoptosis and a poor response to induction chemotherapy (P = 0.008). Furthermore, mitochondrial apoptosis resistance predicted significantly inferior event-free survival (65% vs. 91% at 5 years; P = 0.0376). To define the molecular determinants of this mitochondrial apoptosis resistance, we performed targeted exon sequencing and array CGH copy number analysis. This revealed that loss-of-function mutations in the polycomb repressive complex 2 (PRC2) core subunits (EZH2, EED or SUZ12) were associated with mitochondrial apoptosis resistance (P = 0.007) in clinical specimens. PRC2 is a chromatin modifying complex best known for its role in transcriptional repression, which functions as a tumor suppressor in T-ALL, but whether PRC2 regulates mitochondrial apoptosis is unknown. Using shRNA knockdown in human T-ALL cells, we found that depletion of PRC2 subunits in T-ALL cells induced mitochondrial apoptosis resistance, as assessed by BH3 profiling analysis (P 〈 0.001). PRC2 inactivation also induced resistance to chemotherapy-induced apoptosis (P 〈 0.0001), and increased T-ALL fitness following treatment with the antileukemic drug vincristine (P = 0.0001). Apoptosis resistance upon inactivation of EZH2 (a PRC2 catalytic subunit) was reversed by transduction of wild-type EZH2, but not by an EZH2 point mutant with impaired methyltransferase activity, indicating that this effect is mediated by the enzymatic activity of PRC2. In normal mouse thymocytes, heterozygous deletion of the PRC2 subunits Ezh2 or Eed was sufficient to induce apoptosis resistance in non-transformed double-negative T-cell progenitors (P 〈 0.010), indicating that apoptosis resistance can arise prior to oncogenic transformation. The best-known regulators of mitochondrial apoptosis are BCL2-family genes, but RNA-seq analysis of shRNA knockdown of the PRC2 subunits in a T-ALL cell line revealed that PRC2 did not regulate expression of any of the known BCL2 family members. Instead, PRC2 loss led to upregulation of TRAP1, a mitochondrially localized chaperone of the HSP90 family. TRAP1 upregulation was necessary for induction of apoptosis resistance following PRC2 inactivation, because shRNA knockdown of TRAP1 in the human CCRF-CEM cell line completely blocked induction of apoptosis resistance following PRC2 inactivation (P 〈 0.0001). Moreover, pharmacologic TRAP1 inhibition synergized with the antileukemic drugs dexamethasone and doxorubicin (combination index = 0.37 and 0.42, respectively). To define how PRC2 regulates TRAP1, we performed ChIP-seq analysis, which revealed that TRAP1 regulation by PRC2 is indirect. Combined ChIP-seq and RNA-seq analysis revealed a number of direct targets of PRC2, all of which were tested for their ability to upregulate TRAP1 and induce apoptosis resistance. This showed that the LIM domain transcription factor CRIP2 is a direct target of PRC2 that is necessary and sufficient for regulation of TRAP1, and for induction of apoptosis resistance downstream of PRC2 inactivation. To confirm the relevance of our findings, we used the EZH2 inhibitor GSK126 to inhibit enzymatic activity of PRC2, which revealed that EZH2 normally represses CRIP2 and TRAP1 expression in primary patient-derived xenografts. Finally, we found that increased TRAP1 expression correlates with treatment failure in T-ALL clinical specimens (P = 0.028). Taken together, our findings support a model in which loss of PRC2 induces transcriptional upregulation of its direct target CRIP2, which subsequently activates expression of TRAP1, leading to resistance to chemotherapy-induced mitochondrial apoptosis. Disclosures Aries: Pfizer: Employment. Teachey:Amgen: Consultancy; La Roche: Consultancy. Letai:AstraZeneca: Consultancy, Other: Lab research report; AbbVie: Consultancy, Other: Lab research report; Flash Therapeutics: Equity Ownership; Novartis: Consultancy, Other: Lab research report; Vivid Biosciences: Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...