GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Materials, MDPI AG, Vol. 15, No. 5 ( 2022-03-07), p. 1970-
    Abstract: Cranioplasty with freehand-molded polymethylmethacrylate implants is based on decades of experience and is still frequently used in clinical practice. However, data confirming the fracture toughness and standard biomechanical tests are rare. This study aimed to determine the amount of force that could be applied to virtually planned, template-molded, patient-specific implants (n = 10) with an implant thickness of 3 mm, used in the treatment of a temporoparietal skull defect (91.87 cm2), until the implant cracks and finally breaks. Furthermore, the influence of the weight and porosity of the implant on its force resistance was investigated. The primary outcome showed that a high force was required to break the implant (mean and standard deviation 1484.6 ± 167.7 N), and this was very strongly correlated with implant weight (Pearson’s correlation coefficient 0.97; p 〈 0.001). Secondary outcomes were force application at the implant’s first, second, and third crack. Only a moderate correlation could be found between fracture force and the volume of porosities (Pearson’s correlation coefficient 0.59; p = 0.073). The present study demonstrates that an implant thickness of 3 mm for a temporoparietal skull defect can withstand sufficient force to protect the brain. Greater implant weight and, thus, higher material content increases thickness, resulting in more resistance. Porosities that occur during the described workflow do not seem to reduce resistance. Therefore, precise knowledge of the fracture force of polymethylmethacrylate cranial implants provides insight into brain injury prevention and serves as a reference for the virtual design process.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Clinical Medicine, MDPI AG, Vol. 9, No. 5 ( 2020-05-22), p. 1579-
    Abstract: The aim of this study was to compare the efficacy of the intraoperative bending of titanium mesh with the efficacy of pre-contoured “hybrid” patient-specific titanium mesh for the surgical repair of isolated orbital floor fractures. In-house 3D-printed anatomical models were used as bending guides. The main outcome measures were preoperative and postoperative orbital volume and surgery time. We performed a retrospective cohort study including 22 patients who had undergone surgery between May 2016 and November 2018. The first twelve patients underwent conventional reconstruction with intraoperative free-hand bending of an orbital floor mesh plate. The subsequent ten patients received pre-contoured plates based on 3D-printed orbital models that were produced by mirroring the non-fractured orbit of the patient using a medical imaging software. We compared the preoperative and postoperative absolute volume difference (unfractured orbit, fractured orbit), the fracture area, the fracture collapse, and the effective surgery time between the two groups. In comparison to the intraoperative bending of titanium mesh, the application of preformed plates based on a 3D-printed orbital model resulted in a non-significant absolute volume difference in the intervention group (p = 0.276) and statistically significant volume difference in the conventional group (p = 0.002). Further, there was a significant reduction of the surgery time (57.3 ± 23.4 min versus 99.8 ± 28.9 min, p = 0.001). The results of this study suggest that the use of 3D-printed orbital models leads to a more accurate reconstruction and a time reduction during surgery.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2011
    In:  Journal of Medical Case Reports Vol. 5, No. 1 ( 2011-12)
    In: Journal of Medical Case Reports, Springer Science and Business Media LLC, Vol. 5, No. 1 ( 2011-12)
    Type of Medium: Online Resource
    ISSN: 1752-1947
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2011
    detail.hit.zdb_id: 2269805-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Clinical Medicine, MDPI AG, Vol. 9, No. 12 ( 2020-12-20), p. 4119-
    Abstract: Individual cutting guides for the reconstruction of lower jaw defects with fibular grafts are often used. However, the application of these osteotomy tools is costly and time intensive. The aim of this study was to compare the precision of osteotomies using a 3D-printed guide with those using a universal, reusable, and more cost-efficient Multi-Use Cutting Jig (MUC-Jig). In this non-blinded experimental study, 10 cranio-maxillofacial surgeons performed four graft removals each in a randomized order using the same osteotomy angle, both proximally (sagittal cut) and distally (coronal cut), of a graft (45°, 30°, 15°, or 0°), first with the MUC-Jig then with the 3D-printed cutting guide. The 40 fibula transplants (Tx) of each method (n = 80) were then analyzed concerning their Tx length and osteotomy angles and compared to the original planning data. Furthermore, the surgeons’ subjective perception and the duration of the two procedures were analyzed. The mean relative length and mean relative angle deviation between the MUC-Jig (−0.08 ± 1.12 mm; −0.69° ± 3.15°) and the template (0.22 ± 0.90 mm; 0.36° ± 2.56°) group differed significantly (p = 0.002; p = 〈 0.001), but the absolute deviations did not (p = 0.206; p = 0.980). Consequently, clinically comparable osteotomy results can be achieved with both methods, but from an economic point of view the MUC-Jig is a more cost-efficient solution.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Clinical Medicine, MDPI AG, Vol. 10, No. 16 ( 2021-08-09), p. 3509-
    Abstract: The present study aimed to analyze if a preformed “hybrid” patient-specific orbital mesh provides a more accurate reconstruction of the orbital floor and a better functional outcome than a standardized, intraoperatively adapted titanium implant. Thirty patients who had undergone surgical reconstruction for isolated, unilateral orbital floor fractures between May 2016 and November 2018 were included in this study. Of these patients, 13 were treated conventionally by intraoperative adjustment of a standardized titanium mesh based on assessing the fracture’s shape and extent. For the other 17 patients, an individual three-dimensional (3D) anatomical model of the orbit was fabricated with an in-house 3D-printer. This model was used as a template to create a so-called “hybrid” patient-specific titanium implant by preforming the titanium mesh before surgery. The functional and cosmetic outcome in terms of diplopia, enophthalmos, ocular motility, and sensory disturbance trended better when “hybrid” patient-specific titanium meshes were used but with statistically non-significant differences. The 3D-printed anatomical models mirroring the unaffected orbit did not delay the surgery’s timepoint. Nonetheless, it significantly reduced the surgery duration compared to the traditional method (58.9 (SD: 20.1) min versus 94.8 (SD: 33.0) min, p-value = 0.003). This study shows that using 3D-printed anatomical models as a supporting tool allows precise and less time-consuming orbital reconstructions with clinical benefits.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Applied Sciences, MDPI AG, Vol. 12, No. 12 ( 2022-06-20), p. 6286-
    Abstract: Distraction osteogenesis is a clinically established technique for lengthening, molding and shaping bone by new bone formation. The experimental evaluation of this expensive and time-consuming treatment is of high impact for better understanding of tissue engineering but mainly relies on a limited number of histological slices. These tissue slices contain two-dimensional information comprising only about one percent of the volume of interest. In order to analyze the soft and hard tissues of the entire jaw of a single rat in a multimodal assessment, we combined micro computed tomography (µCT) with histology. The µCT data acquired before and after decalcification were registered to determine the impact of decalcification on local tissue shrinkage. Identification of the location of the H & E-stained specimen within the synchrotron radiation-based µCT data collected after decalcification was achieved via non-rigid slice-to-volume registration. The resulting bi- and tri-variate histograms were divided into clusters related to anatomical features from bone and soft tissues, which allowed for a comparison of the approaches and resulted in the hypothesis that the combination of laboratory-based µCT before decalcification, synchrotron radiation-based µCT after decalcification and histology with hematoxylin-and-eosin staining could be used to discriminate between different types of collagen, key components of new bone formation.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Elsevier BV ; 2013
    In:  British Journal of Oral and Maxillofacial Surgery Vol. 51, No. 6 ( 2013-09), p. 486-492
    In: British Journal of Oral and Maxillofacial Surgery, Elsevier BV, Vol. 51, No. 6 ( 2013-09), p. 486-492
    Type of Medium: Online Resource
    ISSN: 0266-4356
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2013
    detail.hit.zdb_id: 2009048-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...