GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Ecology & Evolution, Springer Science and Business Media LLC, Vol. 6, No. 5 ( 2022-03-24), p. 630-643
    Type of Medium: Online Resource
    ISSN: 2397-334X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2879715-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Physiology, Frontiers Media SA, Vol. 13 ( 2022-8-8)
    Abstract: The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.
    Type of Medium: Online Resource
    ISSN: 1664-042X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2564217-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2019
    In:  Molecular Biology and Evolution Vol. 36, No. 10 ( 2019-10-01), p. 2227-2237
    In: Molecular Biology and Evolution, Oxford University Press (OUP), Vol. 36, No. 10 ( 2019-10-01), p. 2227-2237
    Abstract: A key question in evolutionary biology concerns the relative importance of different sources of adaptive genetic variation, such as de novo mutations, standing variation, and introgressive hybridization. A corollary question concerns how allelic variants derived from these different sources may influence the molecular basis of phenotypic adaptation. Here, we use a protein-engineering approach to examine the phenotypic effect of putatively adaptive hemoglobin (Hb) mutations in the high-altitude Tibetan wolf that were selectively introgressed into the Tibetan mastiff, a high-altitude dog breed that is renowned for its hypoxia tolerance. Experiments revealed that the introgressed coding variants confer an increased Hb–O2 affinity in conjunction with an enhanced Bohr effect. We also document that affinity-enhancing mutations in the β-globin gene of Tibetan wolf were originally derived via interparalog gene conversion from a tandemly linked β-globin pseudogene. Thus, affinity-enhancing mutations were introduced into the β-globin gene of Tibetan wolf via one form of intragenomic lateral transfer (ectopic gene conversion) and were subsequently introduced into the Tibetan mastiff genome via a second form of lateral transfer (introgression). Site-directed mutagenesis experiments revealed that the increased Hb–O2 affinity requires a specific two-site combination of amino acid replacements, suggesting that the molecular underpinnings of Hb adaptation in Tibetan mastiff (involving mutations that arose in a nonexpressed gene and which originally fixed in Tibetan wolf) may be qualitatively distinct from functionally similar changes in protein function that could have evolved via sequential fixation of de novo mutations during the breed’s relatively short duration of residency at high altitude.
    Type of Medium: Online Resource
    ISSN: 0737-4038 , 1537-1719
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2024221-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    The Royal Society ; 2019
    In:  Philosophical Transactions of the Royal Society B: Biological Sciences Vol. 374, No. 1777 ( 2019-07-22), p. 20180238-
    In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, Vol. 374, No. 1777 ( 2019-07-22), p. 20180238-
    Abstract: An underexplored question in evolutionary genetics concerns the extent to which mutational bias in the production of genetic variation influences outcomes and pathways of adaptive molecular evolution. In the genomes of at least some vertebrate taxa, an important form of mutation bias involves changes at CpG dinucleotides: if the DNA nucleotide cytosine (C) is immediately 5′ to guanine (G) on the same coding strand, then—depending on methylation status—point mutations at both sites occur at an elevated rate relative to mutations at non-CpG sites. Here, we examine experimental data from case studies in which it has been possible to identify the causative substitutions that are responsible for adaptive changes in the functional properties of vertebrate haemoglobin (Hb). Specifically, we examine the molecular basis of convergent increases in Hb–O 2 affinity in high-altitude birds. Using a dataset of experimentally verified, affinity-enhancing mutations in the Hbs of highland avian taxa, we tested whether causative changes are enriched for mutations at CpG dinucleotides relative to the frequency of CpG mutations among all possible missense mutations. The tests revealed that a disproportionate number of causative amino acid replacements were attributable to CpG mutations, suggesting that mutation bias can influence outcomes of molecular adaptation. This article is part of the theme issue ‘Convergent evolution in the genomics era: new insights and directions’.
    Type of Medium: Online Resource
    ISSN: 0962-8436 , 1471-2970
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2019
    detail.hit.zdb_id: 1462620-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Portland Press Ltd. ; 2020
    In:  Biochemical Journal Vol. 477, No. 19 ( 2020-10-16), p. 3839-3850
    In: Biochemical Journal, Portland Press Ltd., Vol. 477, No. 19 ( 2020-10-16), p. 3839-3850
    Abstract: In vertebrate haemoglobin (Hb), the NH2-terminal residues of the α- and β-chain subunits are thought to play an important role in the allosteric binding of protons (Bohr effect), CO2 (as carbamino derivatives), chloride ions, and organic phosphates. Accordingly, acetylation of the α- and/or β-chain NH2-termini may have significant effects on the oxygenation properties of Hb. Here we investigate the effect of NH2-terminal acetylation by using a newly developed expression plasmid system that enables us to compare recombinantly expressed Hbs that are structurally identical except for the presence or absence of NH2-terminal acetyl groups. Experiments with native and recombinant Hbs of representative vertebrates reveal that NH2-terminal acetylation does not impair the Bohr effect, nor does it significantly diminish responsiveness to allosteric cofactors, such as chloride ions or organic phosphates. These results suggest that observed variation in the oxygenation properties of vertebrate Hbs is principally explained by amino acid divergence in the constituent globin chains rather than post-translational modifications of the globin chain NH2-termini.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2020
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature, Springer Science and Business Media LLC, Vol. 583, No. 7816 ( 2020-07-16), p. E26-E26
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Wiley ; 2020
    In:  Current Protocols in Protein Science Vol. 101, No. 1 ( 2020-09)
    In: Current Protocols in Protein Science, Wiley, Vol. 101, No. 1 ( 2020-09)
    Abstract: The development of new technologies for the efficient expression of recombinant hemoglobin (rHb) is of interest for experimental studies of protein biochemistry and the development of cell‐free blood substitutes in transfusion medicine. Expression of rHb in Escherichia coli host cells has numerous advantages, but one disadvantage of using prokaryotic systems to express eukaryotic proteins is that they are incapable of performing post‐translational modifications such as NH 2 ‐terminal acetylation. One possible solution is to coexpress additional enzymes that can perform the necessary modifications in the host cells. Here, we report a new method for synthesizing human rHb with proper NH 2 ‐terminal acetylation. Mass spectrometry experiments involving native and recombinant human Hb confirmed the efficacy of the new technique in producing correctly acetylated globin chains. Finally, functional experiments provided insights into the effects of NH 2 ‐terminal acetylation on O 2 binding properties. © 2020 Wiley Periodicals LLC. Basic Protocol 1 : Gene synthesis and cloning the cassette to the expression plasmid Basic Protocol 2 : Selection of E. coli expression strains for coexpression Basic Protocol 3 : Large‐scale recombinant hemoglobin expression and purification Support Protocol 1 : Measuring O 2 equilibration curves Support Protocol 2 : Mass spectrometry to confirm NH 2 ‐terminal acetylation
    Type of Medium: Online Resource
    ISSN: 1934-3655 , 1934-3663
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2179077-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: eLife, eLife Sciences Publications, Ltd, Vol. 12 ( 2023-06-01)
    Abstract: In 1741, shipwrecked naturalist Georg Wilhelm Steller made detailed observations of large marine mammals grazing on seaweed in the shallow waters surrounding a remote island in the North Pacific Ocean. Within thirty years, these ‘Steller’s sea cows’ had been hunted to extinction. Unlike their remaining tropical relatives – dugongs and manatees – Steller’s sea cows were specialized to cold, sub-Arctic environments. Measuring up to 10 meters long, they were much larger than other sea cow species. This, along with having very thick skin, helped them to reduce heat loss. Previous work showed that the hemoglobin protein – which binds to and carries oxygen around mammalian bodies – of Steller’s sea cows had a decreased affinity for oxygen, resulting in greater delivery of oxygen to organs and tissues. It was thought that this could be an adaptation to fuel heightened metabolic heat production in cold conditions. Studies of ancient DNA also identified the substitution of a single building block in the Steller’s sea cow hemoglobin protein that is not present in other mammals and was suspected to underlie this modification. To determine how this unique substitution affects Steller’s sea cow hemoglobin function – and whether it contributed to their ability to live in cold environments – Signore et al. generated hemoglobin proteins of Steller’s sea cows, dugongs and Florida manatees. Testing their biochemical properties showed that this single exchange profoundly alters multiple aspects of how the Steller’s sea cow hemoglobin works. Alongside reducing hemoglobin’s oxygen affinity, the Steller’s sea cow substitution also makes the protein more soluble, potentially increasing the level of hemoglobin within red blood cells. Additionally, it eliminates hemoglobin sensitivity to a molecule involved in oxygen binding – known as DPG – saving energy by no longer requiring production of this molecule. Furthermore, the same substitution makes hemoglobin less sensitive to changes in temperature, which would have helped to safeguard the delivery of oxygen to cool limbs and other extremities, reducing costly heat loss. Together, these changes in hemoglobin would have helped the Steller’s sea cow to more efficiently transport oxygen around the body. Importantly, generating and testing Steller’s sea cow pre-natal hemoglobins suggested this substitution may have also helped to enhance the fetal growth rate of these immense marine mammals by improving gas exchange between the mother and fetus. Signore et al. have revealed how a mutated form of hemoglobin allowed an extinct mammal to adapt to an extreme environment. Similar methods could be used to understand the physiological attributes of other extinct animals. In the future, this increased understanding of hemoglobin mutations could aid the development of human hemoglobin substitutes for therapeutic uses.
    Type of Medium: Online Resource
    ISSN: 2050-084X
    Language: English
    Publisher: eLife Sciences Publications, Ltd
    Publication Date: 2023
    detail.hit.zdb_id: 2687154-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: BMC Evolutionary Biology, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2010), p. 214-
    Type of Medium: Online Resource
    ISSN: 1471-2148
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2010
    detail.hit.zdb_id: 2041493-6
    detail.hit.zdb_id: 3053924-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 3, No. 7 ( 2017-07-07)
    Abstract: Mitochondrial uncoupling protein 1 (UCP1) is essential for nonshivering thermogenesis in brown adipose tissue and is widely accepted to have played a key thermoregulatory role in small-bodied and neonatal placental mammals that enabled the exploitation of cold environments. We map ucp1 sequences from 133 mammals onto a species tree constructed from a ~51-kb sequence alignment and show that inactivating mutations have occurred in at least 8 of the 18 traditional placental orders, thereby challenging the physiological importance of UCP1 across Placentalia. Selection and timetree analyses further reveal that ucp1 inactivations temporally correspond with strong secondary reductions in metabolic intensity in xenarthrans and pangolins, or in six other lineages coincided with a ~30 million–year episode of global cooling in the Paleogene that promoted sharp increases in body mass and cladogenesis evident in the fossil record. Our findings also demonstrate that members of various lineages (for example, cetaceans, horses, woolly mammoths, Steller’s sea cows) evolved extreme cold hardiness in the absence of UCP1-mediated thermogenesis. Finally, we identify ucp1 inactivation as a historical contingency that is linked to the current low species diversity of clades lacking functional UCP1, thus providing the first evidence for species selection related to the presence or absence of a single gene product.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2017
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...