GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Remote Sensing, MDPI AG, Vol. 13, No. 11 ( 2021-06-03), p. 2183-
    Abstract: Surface precipitation phase is a fundamental meteorological property with immense importance. Accurate classification of phase from satellite remotely sensed observations is difficult. This study demonstrates the ability of the Precipitation Imaging Package (PIP), a ground-based, in situ precipitation imager, to distinguish precipitation phase. The PIP precipitation phase identification capabilities are compared to observer records from the National Weather Service (NWS) office in Marquette, Michigan, as well as co-located observations from profiling and scanning radars, disdrometer data, and surface meteorological measurements. Examined are 13 events with at least one precipitation phase transition. The PIP-determined onsets and endings of the respective precipitation phase periods agree to within 15 min of NWS observer records for the vast majority of the events. Additionally, the PIP and NWS liquid water equivalent accumulations for 12 of the 13 events were within 10%. Co-located observations from scanning and profiling radars, as well as reanalysis-derived synoptic and thermodynamic conditions, support the accuracy of the precipitation phases identified by the PIP. PIP observations for the phase transition events are compared to output from a parameterization based on wet bulb and near-surface lapse rates to produce a probability of solid precipitation. The PIP phase identification and the parameterization output are consistent. This work highlights the ability of the PIP to properly characterize hydrometeor phase and provide dependable precipitation accumulations under complicated mixed-phase and rain and snow (or vice versa) transition events.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 103, No. 8 ( 2022-08), p. E1762-E1780
    Abstract: The High-Latitude Measurement of Snowfall (HiLaMS) campaign explored variability in snowfall properties and processes at meteorologically distinct field sites located in Haukeliseter, Norway, and Kiruna, Sweden, during the winters of 2016/17 and 2017/18, respectively. Campaign activities were founded upon the sensitivities of a low-cost, core instrumentation suite consisting of Micro Rain Radar, Precipitation Imaging Package, and Multi-Angle Snow Camera. These instruments are highly portable to remote field sites and, considered together, provide a unique and complementary set of snowfall observations including snowflake habit, particle size distributions, fall speeds, surface snowfall accumulations, and vertical profiles of radar moments and snow water content. These snow-specific parameters, used in combination with existing observations from the field sites such as snow gauge accumulations and ambient weather conditions, allow for advanced studies of snowfall processes. HiLaMS observations were used to 1) successfully develop a combined radar and in situ microphysical property retrieval scheme to estimate both surface snowfall accumulation and the vertical profile of snow water content, 2) identify the predominant snowfall regimes at Haukeliseter and Kiruna and characterize associated macrophysical and microphysical properties, snowfall production, and meteorological conditions, and 3) identify biases in the HARMONIE-AROME numerical weather prediction model for forecasts of snowfall accumulations and vertical profiles of snow water content for the distinct snowfall regimes observed at the mountainous Haukeliseter site. HiLaMS activities and results suggest value in the deployment of this enhanced snow observing instrumentation suite to new and diverse high-latitude locations that may be underrepresented in climate and weather process studies.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of Applied Meteorology and Climatology ( 2021-06-17)
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, ( 2021-06-17)
    Abstract: The prevailing snowfall regimes at two Scandinavian sites, Haukeliseter, Norway and Kiruna, Sweden, are documented using ground-based in-situ and remote sensing methods. Micro Rain Radar (MRR) profiles indicate three distinct snowfall regimes occur at both sites: shallow, deep, and intermittent snowfall. The shallow snowfall regime produces the lowest mean snowfall rates and radar echo tops are confined below 1.5 km above ground level (AGL). Shallow snowfall occurs under areas of large scale subsidence with a moist boundary layer and dry air aloft. The atmospheric ridge coinciding with shallow snowfall is highly anomalous over Haukeliseter, but is more common in Kiruna where shallow snowfall was frequently observed. The shallow snowfall particle size distributions (PSDs) are broad with lower particle concentrations than other regimes, especially small particles. Deep snowfall events exhibit MRR profiles that extend above 2 km AGL, and tend to be associated with weak low pressure and high relative humidity throughout the troposphere. The PSDs in deep events are narrower with high concentrations of small particles. Increasing MRR reflectivity towards the surface suggests aggregation as a possible growth process during deep snowfall events. The heaviest mean snowfall rates are associated with intermittent events that are characterized by deep MRR profiles, but have variations in intensity and height. The intermittent regime is associated with anomalous, deep low pressure along the coast of Norway, and enhanced relative humidity at lower levels. The PSDs reveal high concentrations of small and large particles. The analysis reveals that there are unique characteristics of shallow, deep, and intermittent snowfall regimes that are common between the sites.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Cryosphere, Copernicus GmbH, Vol. 18, No. 4 ( 2024-04-10), p. 1709-1731
    Abstract: Abstract. In late March 2011, landfast sea ice (hereafter, “fast ice”) formed in the northern Larsen B embayment and persisted continuously as multi-year fast ice until January 2022. In the 11 years of fast-ice presence, the northern Larsen B glaciers slowed significantly, thickened in their lower reaches, and developed extensive mélange areas, leading to the formation of ice tongues that extended up to 16 km from the 2011 ice fronts. In situ measurements of ice speed on adjacent ice shelf areas spanning 2011 to 2017 show that the fast ice provided significant resistive stress to ice flow. Fast-ice breakout began in late January 2022 and was closely followed by retreat and breakup of both the fast-ice mélange and the glacier ice tongues. We investigate the probable triggers for the loss of fast ice and document the initial upstream glacier responses. The fast-ice breakup is linked to the arrival of a strong ocean swell event ( 〉 1.5 m amplitude; wave period waves 〉 5 s) originating from the northeast. Wave propagation to the ice front was facilitated by a 12-year low in sea ice concentration in the northwestern Weddell Sea, creating a near-ice-free corridor to the open ocean. Remote sensing data in the months following the fast-ice breakout reveals an initial ice flow speed increase ( 〉 2-fold), elevation loss (9 to 11 m), and rapid calving of floating and grounded ice for the three main embayment glaciers Crane (11 km), Hektoria (25 km), and Green (18 km).
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2024
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...