GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Environmental and Experimental Botany, Elsevier BV, Vol. 201 ( 2022-09), p. 104944-
    Type of Medium: Online Resource
    ISSN: 0098-8472
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 1497561-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    CSIRO Publishing ; 2001
    In:  Functional Plant Biology Vol. 28, No. 2 ( 2001), p. 87-
    In: Functional Plant Biology, CSIRO Publishing, Vol. 28, No. 2 ( 2001), p. 87-
    Abstract: Membrane transport activity associated with growth and nutritional status of a marine microheterotroph Thraustochytrium sp. was studied using non-invasive ion-selective slowly vibrating microelectrodes (the MIFE technique). Net fluxes of H + , Ca 2+ and Na + underwent regular changes as the cell progressed from the zoospore to sporangium stages of development. The most pronounced change was a decrease in the net H + influx, which we suggest could be associated with the changes in cytoskeletal organization required for cell cleavage and zoospore release. As cell development progressed from the zoospore stage towards maturity, non-damping endogenous ultradian oscillations (period range of several minutes) became evident. At the sporangium stage, as many as 85% of cells possessed oscillatory membrane transport activity. It is suggested that ultradian ion flux oscillations in Thraustochytrium sp. may be causally linked with cell developmental processes. Discrete Fourier transform and cross-correlation analysis revealed a close association between oscillatory patterns of H + and Na + fluxes. The possibility that these oscillations result from the rhythmical activity of a Na + /H + co-transporter located at the plasma membrane of Thraustochytrium sp. is considered. Oscillations in net Ca 2+ flux were apparently not linked to those in H+ and Na + , and are believed to be due to some other physiological processes. Periods of net H + and Na + flux oscillations were strongly dependent on the external Na + concentrations in the bathing medium. As sodiu m is considered to be an essential element in Thraustochytrium sp., it is suggested that the functional role of such ultradian oscillations may be their involvement in the frequency-encoding mechanism that provides developing cells with information about environment, and nutritional status in particular.
    Type of Medium: Online Resource
    ISSN: 1445-4408
    Language: English
    Publisher: CSIRO Publishing
    Publication Date: 2001
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Functional Plant Biology, CSIRO Publishing, Vol. 49, No. 4 ( 2022-2-22), p. 351-364
    Abstract: Wild rice species provide a rich source of genetic diversity for possible introgression of salinity stress tolerance in cultivated rice. We investigated the physiological basis of salinity stress tolerance in Oryza species by using six rice genotypes (Oryza sativa L.) and four wild rice species. Three weeks of salinity treatment significantly (P  〈  0.05) reduced physiological and growth indices of all cultivated and wild rice lines. However, the impact of salinity-induced growth reduction differed substantially among accessions. Salt tolerant accessions showed better control over gas exchange properties, exhibited higher tissue tolerance, and retained higher potassium ion content despite higher sodium ion accumulation in leaves. Wild rice species showed relatively lower and steadier xylem sap sodium ion content over the period of 3 weeks analysed, suggesting better control over ionic sodium xylem loading and its delivery to shoots with efficient vacuolar sodium ion sequestration. Contrary to this, saline sensitive genotypes managed to avoid initial Na+ loading but failed to accomplish this in the long term and showed higher sap sodium ion content. Conclusively, our results suggest that wild rice genotypes have more efficient control over xylem sodium ion loading, rely on tissue tolerance mechanisms and allow for a rapid osmotic adjustment by using sodium ions as cheap osmoticum for osmoregulation.
    Type of Medium: Online Resource
    ISSN: 1445-4408 , 1445-4416
    Language: English
    Publisher: CSIRO Publishing
    Publication Date: 2022
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Harmful Algae, Elsevier BV, Vol. 80 ( 2018-12), p. 55-63
    Type of Medium: Online Resource
    ISSN: 1568-9883
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 2099362-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Plant Physiology and Biochemistry, Elsevier BV, Vol. 83 ( 2014-10), p. 32-39
    Type of Medium: Online Resource
    ISSN: 0981-9428
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2014
    detail.hit.zdb_id: 2031431-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Agronomy, MDPI AG, Vol. 11, No. 11 ( 2021-11-10), p. 2269-
    Abstract: Potassium deficiency is one of the major issues affecting crop production around the globe. Giving the high cost of potassium fertilizers and environmental concerns related to inappropriate fertilization practices, developing more potassium use efficient (KUE) varieties is critical for sustainable food production in agricultural systems. In this study, we analysed the impact of potassium availability on agronomical attributes of thirty barley genotypes grown at four different levels of potassium (0.002 mM, 0.02 mM, 2 mM, 20 mM) under glasshouse conditions. The results showed that the availability of potassium in the soil had a major effect on yield components i.e., spike number, grain number and grain weight. Furthermore, grain weight showed a strong correlation with grain number and spike number at all levels of potassium supply. Although an increase in potassium supply led to an increase in plant height in all genotypes, the correlation with grain weight was very weak at all levels. Potassium supplementation caused an increase in shoot dry weight, which also showed a weak correlation with grain weight at the 0.002 mM potassium supply level. The genotypes Gebeina, Skiff, YF374, Flagship and YF374 were highly efficient in performing at suboptimal K supply levels and, thus, can be recommended to be grown in K-impoverished soils. We also suggest that grain and spike numbers could be used as proxies for KUE studies, to construct DH lines and identify QTL to improve low potassium tolerance and KUE in barley.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 17 ( 2022-08-31), p. 9900-
    Abstract: Soil salinity is a major constraint that affects plant growth and development. Rice is a staple food for more than half of the human population but is extremely sensitive to salinity. Among the several known mechanisms, the ability of the plant to exclude cytosolic Na+ is strongly correlated with salinity stress tolerance in different plant species. This exclusion is mediated by the plasma membrane (PM) Na+/H+ antiporter encoded by Salt Overly Sensitive (SOS1) gene and driven by a PM H+-ATPase generated proton gradient. However, it is not clear to what extent this mechanism is operational in wild and cultivated rice species, given the unique rice root anatomy and the existence of the bypass flow for Na+. As wild rice species provide a rich source of genetic diversity for possible introgression of abiotic stress tolerance, we investigated physiological and molecular basis of salinity stress tolerance in Oryza species by using two contrasting pairs of cultivated (Oryza sativa) and wild rice species (Oryza alta and Oryza punctata). Accordingly, dose- and age-dependent Na+ and H+ fluxes were measured using a non-invasive ion selective vibrating microelectrode (the MIFE technique) to measure potential activity of SOS1-encoded Na+/H+ antiporter genes. Consistent with GUS staining data reported in the literature, rice accessions had (~4–6-fold) greater net Na+ efflux in the root elongation zone (EZ) compared to the mature root zone (MZ). Pharmacological experiments showed that Na+ efflux in root EZ is suppressed by more than 90% by amiloride, indicating the possible involvement of Na+/H+ exchanger activity in root EZ. Within each group (cultivated vs. wild) the magnitude of amiloride-sensitive Na+ efflux was higher in tolerant genotypes; however, the activity of Na+/H+ exchanger was 2–3-fold higher in the cultivated rice compared with their wild counterparts. Gene expression levels of SOS1, SOS2 and SOS3 were upregulated under 24 h salinity treatment in all the tested genotypes, with the highest level of SOS1 transcript detected in salt-tolerant wild rice genotype O. alta (~5–6-fold increased transcript level) followed by another wild rice, O. punctata. There was no significant difference in SOS1 expression observed for cultivated rice (IR1-tolerant and IR29-sensitive) under both 0 and 24 h salinity exposure. Our findings suggest that salt-tolerant cultivated rice relies on the cytosolic Na+ exclusion mechanism to deal with salt stress to a greater extent than wild rice, but its operation seems to be regulated at a post-translational rather than transcriptional level.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: eLife, eLife Sciences Publications, Ltd, Vol. 11 ( 2022-09-07)
    Abstract: Brassinosteroids (BR) are key hormonal regulators of plant development. However, whereas the individual components of BR perception and signaling are well characterized experimentally, the question of how they can act and whether they are sufficient to carry out the critical function of cellular elongation remains open. Here, we combined computational modeling with quantitative cell physiology to understand the dynamics of the plasma membrane (PM)-localized BR response pathway during the initiation of cellular responses in the epidermis of the Arabidopsis root tip that are be linked to cell elongation. The model, consisting of ordinary differential equations, comprises the BR-induced hyperpolarization of the PM, the acidification of the apoplast and subsequent cell wall swelling. We demonstrate that the competence of the root epidermal cells for the BR response predominantly depends on the amount and activity of H + -ATPases in the PM. The model further predicts that an influx of cations is required to compensate for the shift of positive charges caused by the apoplastic acidification. A potassium channel was subsequently identified and experimentally characterized, fulfilling this function. Thus, we established the landscape of components and parameters for physiological processes potentially linked to cell elongation, a central process in plant development.
    Type of Medium: Online Resource
    ISSN: 2050-084X
    Language: English
    Publisher: eLife Sciences Publications, Ltd
    Publication Date: 2022
    detail.hit.zdb_id: 2687154-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2017
    In:  BMC Plant Biology Vol. 17, No. 1 ( 2017-12)
    In: BMC Plant Biology, Springer Science and Business Media LLC, Vol. 17, No. 1 ( 2017-12)
    Type of Medium: Online Resource
    ISSN: 1471-2229
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2059868-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    CSIRO Publishing ; 2003
    In:  Functional Plant Biology Vol. 30, No. 5 ( 2003), p. 507-
    In: Functional Plant Biology, CSIRO Publishing, Vol. 30, No. 5 ( 2003), p. 507-
    Abstract: The effects of various Na / Ca ratios on root growth, development, and ion acquisition patterns were studied in hydroponic experiments with barley (Hordeum vulgare L.) plants. In total, interactions between three different levels of salinity (1, 50 and 100 mM NaCl) and three different levels of Ca2+ (0.1, 1 and 10 mM) were studied (a full factorial experiment). Growth rate and biomass accumulation were significantly lower in salinised roots. In addition to reduction in extension growth, salinity also significantly affected plant developmental processes (for example reduced root hair density and root thickening). Supplemental Ca2+ significantly ameliorated those detrimental effects of salinity. Non-invasive, microelectrode ion-flux (MIFE) measurements showed that the onset of salt stress caused rapid and prolonged efflux of H+, K+ and NH4+ from the root epidermis. This efflux could be significantly reversed, or completely prevented, by the presence of high Ca2+ concentration in the bath solution, even after several days of salt stress. Membrane potential measurements in root epidermal cells showed that high Ca2+ levels in the bath were able to restore (otherwise depolarised) membrane potential back to control level (–120 to –130 mV). At the same time, no significant impact of Ca2+ on net Na+ uptake in plant roots was found. Some limitations of the MIFE technique for study of Na+ uptake kinetics under saline conditions, as well as possible ionic mechanisms underlying the ameliorating Ca2+ effects on ion fluxes in roots of salt-stressed plants, are discussed.
    Type of Medium: Online Resource
    ISSN: 1445-4408
    Language: English
    Publisher: CSIRO Publishing
    Publication Date: 2003
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...