GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2024
    In:  Environmental Monitoring and Assessment Vol. 196, No. 3 ( 2024-03)
    In: Environmental Monitoring and Assessment, Springer Science and Business Media LLC, Vol. 196, No. 3 ( 2024-03)
    Abstract: Methane is a significant greenhouse gas (GHG), and it is imperative to understand its spatiotemporal distribution and primary sources in areas with higher methane concentrations, as such insights are essential for informing effective mitigation policies. In this study, we employed TROPOMI satellite retrievals to analyze the spatiotemporal patterns of methane distributions and identify major emission sources in South Korea over the period from August 2018 to July 2019. Additionally, we examined the spatial correlations between satellite methane retrievals and emission sources to characterize regions with higher methane levels on an annual basis. Concerning spatial distributions, concentrations exceeding 1870 ppb were predominantly observed in western non-mountainous regions, particularly in rice paddy areas. Moreover, sporadic concentrations exceeding 1880 ppb were detected in large ports and industrial zones, primarily located in coastal regions of South Korea. Our spatial correlation analysis, conducted using the SDMSelect method, identified specific emissions contributing to regions with higher methane concentrations. There were some areas with relatively strong correlations between high XCH 4 and emissions from the domestic livestock industry, fossil fuel utilization (specifically, the oil and gas sector), landfills, and rice paddies. This analysis, incorporating domestic emission inventories and satellite data, provides valuable insights into the characteristics of regional methane concentrations. In addition, this analysis can assess national methane emissions inventories, where there is limited information on the spatial distributions, offering critical information for the prioritization of domestic regional policies aimed at reducing greenhouse gas emissions.
    Type of Medium: Online Resource
    ISSN: 0167-6369 , 1573-2959
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2024
    detail.hit.zdb_id: 2012242-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 2 ( 2021-01-29), p. 1211-1243
    Abstract: Abstract. Quantifying forcings from anthropogenic perturbations to the Earth system (ES) is important for understanding changes in climate since the pre-industrial (PI) period. Here, we quantify and analyse a wide range of present-day (PD) anthropogenic effective radiative forcings (ERFs) with the UK's Earth System Model (ESM), UKESM1, following the protocols defined by the Radiative Forcing Model Intercomparison Project (RFMIP) and the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP). In particular, quantifying ERFs that include rapid adjustments within a full ESM enables the role of various chemistry–aerosol–cloud interactions to be investigated. Global mean ERFs for the PD (year 2014) relative to the PI (year 1850) period for carbon dioxide (CO2), nitrous oxide (N2O), ozone-depleting substances (ODSs), and methane (CH4) are 1.89 ± 0.04, 0.25 ± 0.04, −0.18 ± 0.04, and 0.97 ±  0.04 W m−2, respectively. The total greenhouse gas (GHG) ERF is 2.92 ± 0.04 W m−2. UKESM1 has an aerosol ERF of −1.09 ± 0.04 W m−2. A relatively strong negative forcing from aerosol–cloud interactions (ACI) and a small negative instantaneous forcing from aerosol–radiation interactions (ARI) from sulfate and organic carbon (OC) are partially offset by a substantial forcing from black carbon (BC) absorption. Internal mixing and chemical interactions imply that neither the forcing from ARI nor ACI is linear, making the aerosol ERF less than the sum of the individual speciated aerosol ERFs. Ozone (O3) precursor gases consisting of volatile organic compounds (VOCs), carbon monoxide (CO), and nitrogen oxides (NOx), but excluding CH4, exert a positive radiative forcing due to increases in O3. However, they also lead to oxidant changes, which in turn cause an indirect aerosol ERF. The net effect is that the ERF from PD–PI changes in NOx emissions is negligible at 0.03 ± 0.04 W m−2, while the ERF from changes in VOC and CO emissions is 0.33 ± 0.04 W m−2. Together, aerosol and O3 precursors (called near-term climate forcers (NTCFs) in the context of AerChemMIP) exert an ERF of −1.03 ± 0.04 W m−2, mainly due to changes in the cloud radiative effect (CRE). There is also a negative ERF from land use change (−0.17 ± 0.04 W m−2). When adjusted from year 1850 to 1700, it is more negative than the range of previous estimates, and is most likely due to too strong an albedo response. In combination, the net anthropogenic ERF (1.76 ± 0.04 W m−2) is consistent with other estimates. By including interactions between GHGs, stratospheric and tropospheric O3, aerosols, and clouds, this work demonstrates the importance of ES interactions when quantifying ERFs. It also suggests that rapid adjustments need to include chemical as well as physical adjustments to fully account for complex ES interactions.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmosphere, MDPI AG, Vol. 11, No. 10 ( 2020-10-14), p. 1095-
    Abstract: As one of the main drivers for climate change, it is important to understand changes in anthropogenic aerosol emissions and evaluate the climate impact. Anthropogenic aerosols have affected global climate while exerting a much larger influence on regional climate by their short lifetime and heterogeneous spatial distribution. In this study, the effective radiative forcing (ERF), which has been accepted as a useful index for quantifying the effect of climate forcing, was evaluated to understand the effects of aerosol on regional climate over a historical period (1850–2014). Eastern United States (EUS), Western European Union (WEU), and Eastern Central China (ECC), are regions that predominantly emit anthropogenic aerosols and were analyzed using Coupled Model Intercomparison Project 6 (CMIP6) simulations implemented within the framework of the Aerosol Chemistry Model Intercomparison Project (AerChemMIP) in the UK’s Earth System Model (UKESM1). In EUS and WEU, where industrialization occurred relatively earlier, the negative ERF seems to have been recovering in recent decades based on the decreasing trend of aerosol emissions. Conversely, the radiative cooling in ECC seems to be strengthened as aerosol emission continuously increases. These aerosol ERFs have been largely attributed to atmospheric rapid adjustments, driven mainly by aerosol-cloud interactions rather than direct effects of aerosol such as scattering and absorption.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmosphere, MDPI AG, Vol. 11, No. 11 ( 2020-10-27), p. 1161-
    Abstract: This study analyzes the relationship between various atmospheric fields and the observed PM10 concentrations in the Seoul metropolitan area, South Korea, during the winters of the 2001–2014 period to find suitable atmospheric indices for predicting high PM10 episodes in the region. The analysis shows that PM10 concentration in the metropolitan area is mainly affected by the intensity of horizontal ventilation and the 500 hPa high-pressure system over the Korean peninsula. The modified Korea particulate matter index (MKPI) is proposed based on a 10 m wind speed for surface ventilation and 500 hPa zonal wind for the intensity of a 500 hPa high-pressure system over the Korean peninsula. It is found that a positive MKPI value is closely correlated with the occurrence of high PM10 concentration episodes, and hence, can be used as a predictor for high PM10 episodes in the area. A future projection of the MKPI using two three-member general circulation model (GCM) ensembles with four shared socioeconomic pathway (SSP) scenarios in Coupled Model Intercomparison Project Phase 6 (CMIP6) shows that positive MKPI events and high PM10 episodes are expected to increase by 5.4−16.4% depending on the SSP scenarios in the 2081−2100 period from the present-day period of 1995−2014.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...