GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 108, No. 11 ( 2006-11-16), p. 1118-1118
    Abstract: The regulated oscillation of protein expression is an essential mechanism of cell cycle control. The SCF class of E3 ubiquitin ligases is involved in this process by targeting cell cycle regulatory proteins for degradation by the proteasome, with the F-Box subunit of the SCF specifically recruiting a given substrate to the SCF core. We previously reported the cloning of NIPA (Nuclear Interaction Partner of ALK) in complex with constitutively active oncogenic fusions of ALK, which contributes to the development of lymphomas and sarcomas. Subsequently we characterized NIPA as a F-Box protein (FBP) that defines an oscillating ubiquitin E3 ligase targeting nuclear cyclin B1 in interphase thus contributing to the timing of mitotic entry. Using a conditional knockout strategy we inactivated the gene encoding the FBP NIPA to determined the consequences of NIPA deletion in vivo. The targeting construct was designed to flank exon 1 and 2 of the NIPA gene with loxP-sites. Deletion of this region was obtained by crossing the floxed mice to a cre-transgenic mouse strain expressing cre ubiquitously. NIPA deficiency did not affect the viability of NIPA −/− animals. Mating of heterozygotes yielded NIPA +/+, NIPA +/− and NIPA −/− offspring approximately at the expected Mendelian ratio. Although copulatory behavior was normal and vaginal plugs were produced, NIPA-deficient animals have a fertility defect. 100% of the tested NIPA −/− males and 60% of NIPA −/− females never produced progeny with young fertile wild-type mice. Interestingly, histological evaluation showed progressive testis atrophy in NIPA −/− males. Further analyses indicate a block in germ cell differentiation at the stage of meiotic prophase, no spermatides or spermatozoa were observed in NIPA-deficient animals. High levels of nuclear cyclin B1, a previously reported NIPA substrate, were present in NIPA-deficient germ cells. Furthermore, inactivation of NIPA leads to premature mitotic entry and subsequent mitotic catastrophe and TUNEL positive apoptosis in germ cells. Long-term studies of NIPA deficient mice may display a potential role of NIPA in tumor development. Since we found the most striking phenotype in high proliferating germ cells our results strongly confirm the cell cycle regulatory function of NIPA.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2006
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Oncogene, Springer Science and Business Media LLC, Vol. 21, No. 29 ( 2002-07-04), p. 4508-4520
    Type of Medium: Online Resource
    ISSN: 0950-9232 , 1476-5594
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2002
    detail.hit.zdb_id: 2008404-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Informa UK Limited ; 2002
    In:  Molecular and Cellular Biology Vol. 22, No. 4 ( 2002-02-01), p. 979-991
    In: Molecular and Cellular Biology, Informa UK Limited, Vol. 22, No. 4 ( 2002-02-01), p. 979-991
    Type of Medium: Online Resource
    ISSN: 1098-5549
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2002
    detail.hit.zdb_id: 1474919-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 104, No. 11 ( 2004-11-16), p. 558-558
    Abstract: The increasing impact of targeted cancer treatment demands strategies to identify and evaluate resistance mechanisms toward kinase inhibitors prior to their therapeutic application. Point mutations within the Bcr-Abl kinase domain constitute the major mechanism of resistance toward imatinib mesylate in Philadelphia-positive (Ph+) leukemia. Using Bcr-Abl-transformed Ba/F3 cells, we established a cell-based screening strategy for the prediction of specific kinase mutations that cause resistance toward kinase inhibitors. With imatinib at clinically relevant concentrations, we generated 368 resistant Ba/F3 sublines that were derived from resistant colonies. Thirty-two different single point mutations within the kinase domain of Bcr-Abl were identified in twenty-five per cent (liquid culture conditions) and seventy-two per cent (solid culture conditions) of these lines at known and novel positions. Using imatinib, the pattern and relative frequency of mutations reflected matters observed in patients with imatinib resistance. We then applied this screen to the pyrido-pyrimidine PD166326 (PD16), an investigational Abl kinase inihibitor. Compared to imatinib, we observed a five to seven times lower frequency of resistant colonies with equipotent concentrations of PD16. In addition, PD16 produced a distinct pattern of Bcr-Abl mutations. P-loop, A-loop and the known imatinib contact site T315 were affected with both inhibitors, whereas C-helix and SH2 contact sites were affected in imatinib resistant colonies exclusively. In contrast to imatinib, where kinase domain mutations were still widely distributed over the kinase domain even at at 4μM, mutations observed with PD16 at a concentration of 100nM narrowed to the exchange at position T315 to iseulicine. We did not detect mutations outside the kinase domain. Some resistant sublines displayed increased Bcr-Abl activity. Mutations that were derived from the screen were cloned and examined for the extent of cross-resistance to both inhibitors. The majority of mutations were effectively suppressed by PD16 at 50–500nM. In contrast, only few mutations were inhibited by imatinib at 5–10μM. However, exchanges at position F317 mediated resistance toward PD16, but were inhibited by standard concentrations of imatinib. Since this cell-based system produced results that are clinically significant, it may be used to predict resistance mutations in Bcr-Abl and other oncogenic kinases like cKit, EGFR, FIP1L1-PDGFRalpha or FLT3 towards clinically applicated and investigational drugs. Thus, this robust and simple screening strategy provides a rational basis for combinatorial and sequential treatment strategies.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2004
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society of Hematology ; 2007
    In:  Blood Vol. 110, No. 11 ( 2007-11-16), p. 3348-3348
    In: Blood, American Society of Hematology, Vol. 110, No. 11 ( 2007-11-16), p. 3348-3348
    Abstract: The regulated oscillation of protein expression is an essential mechanism of cell cycle control. The SCF class of E3 ubiquitin ligases is involved in this process by targeting cell cycle regulatory proteins for degradation by the proteasome, with the F-Box subunit of the SCF specifically recruiting a given substrate to the SCF core. We previously reported the cloning of NIPA (Nuclear Interaction Partner of ALK) in complex with constitutively active oncogenic fusions of ALK, which contributes to the development of lymphomas and sarcomas. Subsequently we characterized NIPA as a F-Box protein (FBP) that defines an oscillating ubiquitin E3 ligase. The SCFNIPA complex targets nuclear cyclin B1 for ubiquitination in interphase while phosphorylation of NIPA in late G2 phase and mitosis inactivates the complex to allow for accumulation of cyclin B1. Here, we identify the region of NIPA that mediates binding to its substrate cyclin B1. In addition to the recently described serine residue 354, we specify 2 new residues, Ser-359 and Ser-395, implicated in the phosphorylation process at G2M within this region. Moreover, we found cyclin B1/Cdk1 to phosphorylate NIPA at Ser-395 in mitosis. Mutation of both Ser-359 and Ser-395 impaired effective inactivation of the SCFNIPA complex, resulting in reduced levels of mitotic cyclin B1. Furthermore, we aimed to identify the kinases involved in the initial phosphorylation of Ser-345. Therefore, we tested a panel of different kinases active at the G2M transition such as GSK3?, Casein kinase 2, PLK-1 and Erk1. Effective in vitro phosphorylation of NIPA could only be demonstrated with Erk-1. Moreover, we demonstrate an interaction of Erk-1 and NIPA at G2M but not in interphase cells. Binding of Erk-1 and NIPA led to phosphorylation at Ser-354 in vivo and could be blocked by the MEK-1/MEK-2 inhibitor PD98059. Together these data suggest a process of sequential phosphorylation where NIPA is initially phosphorylated by Erk-1 leading to the dissociation of NIPA from the SCF core complex. Once Ser-354 is phosphorylated, cyclin B1/CDK1 amplifies phosphorylation of NIPA, thus contributing to the regulation of its own abundance in early mitosis. In ALK positive lymphomas enhanced phosphorylation of NIPA at Ser 354 can be observed. We demonstrate that NPM-ALK leads to the activation of Erk-1, thereby phosphorylating and inactivating the SCFNIPA E3 ligase. Inactivation of SCFNIPA may have an important impact on the cell cycle turnover of lymphoma cells and thus for the pathogenesis of NPM-ALK induced lymphomas.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Elsevier BV ; 2001
    In:  Journal of Biological Chemistry Vol. 276, No. 46 ( 2001-11), p. 43419-43427
    In: Journal of Biological Chemistry, Elsevier BV, Vol. 276, No. 46 ( 2001-11), p. 43419-43427
    Type of Medium: Online Resource
    ISSN: 0021-9258
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2001
    detail.hit.zdb_id: 2141744-1
    detail.hit.zdb_id: 1474604-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Biological Chemistry, Elsevier BV, Vol. 277, No. 14 ( 2002-04), p. 12437-12445
    Type of Medium: Online Resource
    ISSN: 0021-9258
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2002
    detail.hit.zdb_id: 2141744-1
    detail.hit.zdb_id: 1474604-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Society of Hematology ; 2007
    In:  Blood Vol. 110, No. 6 ( 2007-09-15), p. 1840-1847
    In: Blood, American Society of Hematology, Vol. 110, No. 6 ( 2007-09-15), p. 1840-1847
    Abstract: In vivo analyses of thymopoiesis in mice defective in signaling through Kit and γc or Kit and IL-7Rα demonstrate synergy and partial complementation of γc or IL-7–mediated signaling by the Kit signaling pathway. Our molecular analysis in T-lymphoid cells as well as in nonhematopoietic cells shows that Kit and IL-7R signaling pathways directly interact. KL-mediated activation of Kit induced strong tyrosine phosphorylation of γc and IL-7Rα in the absence of IL-7. Activated Kit formed a complex with either IL-7Rα or γc, and tyrosine phosphorylation of both subunits occurred independently of Jak3, suggesting that γc and IL-7Rα are each direct substrates of Kit. Kit activated Jak3 in an IL-7R–dependent manner. Moreover, deficient Stat5 activation of the Kit mutant YY567/569FF lacking intrinsic Src activation capacity was partially reconstituted in the presence of IL-7R and Jak3. Based on the molecular data, we propose a model of Kit-mediated functional activation of γc-containing receptors such as IL-7R, similar to the interaction between Kit and Epo-R. Such indirect activation of the Jak-Stat pathway induced by the interaction between an RTK and type I cytokine receptor could be the underlying mechanism for a context-specific signaling repertoire of a pleiotropic RTK-like Kit.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...