GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Antibodies Vol. 11, No. 2 ( 2022-05-18), p. 37-
    In: Antibodies, MDPI AG, Vol. 11, No. 2 ( 2022-05-18), p. 37-
    Abstract: When constructing isogenic recombinant IgM–IgG pairs, we discovered that μ heavy chains strongly prefer partnering with λ light chains for optimal IgM expression in transiently cotransfected Expi293 cells. When μ chains were paired with κ light chains, IgM yields were low but increased by logs—up to 20,000 X—by using λ chains instead. Switching light chains did not alter epitope specificity. For dimeric IgA2, optimal expression involved pairing with λ chains, whereas light-chain preference varied for other immunoglobulin classes. In summary, recombinant IgM production can be drastically increased by using λ chains, an important finding in the use of IgM for mucosal immunoprophylaxis.
    Type of Medium: Online Resource
    ISSN: 2073-4468
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661514-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Virology, American Society for Microbiology, Vol. 92, No. 14 ( 2018-07-15)
    Abstract: The phase III RV144 human immunodeficiency virus (HIV) vaccine trial conducted in Thailand remains the only study to show efficacy in decreasing the HIV acquisition risk. In Thailand, circulating recombinant forms of HIV clade A/E (CRF01_AE) predominate; in such viruses, env originates from clade E (HIV-E). We constructed a simian-human immunodeficiency virus (SHIV) chimera carrying env isolated from an RV144 placebo recipient in the SHIV-1157ipd3N4 backbone. The latter contains long terminal repeats (LTRs) with duplicated NF-κB sites, thus resembling HIV LTRs. We devised a novel strategy to adapt the parental infectious molecular clone (IMC), R5 SHIV-E1, to rhesus macaques: the simultaneous depletion of B and CD8 + cells followed by the intramuscular inoculation of proviral DNA and repeated administrations of cell-free virus. High-level viremia and CD4 + T-cell depletion ensued. Passage 3 virus unexpectedly caused acute, irreversible CD4 + T-cell loss; the partially adapted SHIV had become dual tropic. Virus and IMCs with exclusive R5 tropism were reisolated from earlier passages, combined, and used to complete adaptation through additional macaques. The final isolate, SHIV-E1p5, remained solely R5 tropic. It had a tier 2 neutralization phenotype, was mucosally transmissible, and was pathogenic. Deep sequencing revealed 99% Env amino acid sequence conservation; X4-only and dual-tropic strains had evolved independently from an early branch of parental SHIV-E1. To conclude, our primate model data reveal that SHIV-E1p5 recapitulates important aspects of HIV transmission and pathobiology in humans. IMPORTANCE Understanding the protective principles that lead to a safe, effective vaccine against HIV in nonhuman primate (NHP) models requires test viruses that allow the evaluation of anti-HIV envelope responses. Reduced HIV acquisition risk in RV144 has been linked to nonneutralizing IgG antibodies with a range of effector activities. Definitive experiments to decipher the mechanisms of the partial protection observed in RV144 require passive-immunization studies in NHPs with a relevant test virus. We have generated such a virus by inserting env from an RV144 placebo recipient into a SHIV backbone with HIV-like LTRs. The final SHIV-E1p5 isolate, grown in rhesus monkey peripheral blood mononuclear cells, was mucosally transmissible and pathogenic. Earlier SHIV-E passages showed a coreceptor switch, again mimicking HIV biology in humans. Thus, our series of SHIV-E strains mirrors HIV transmission and disease progression in humans. SHIV-E1p5 represents a biologically relevant tool to assess prevention strategies.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Virology, American Society for Microbiology, Vol. 93, No. 9 ( 2019-05)
    Abstract: Simian-human immunodeficiency virus (SHIV) infection in rhesus macaques (RMs) resembles human immunodeficiency virus type 1 (HIV-1) infection in humans and serves as a tool to evaluate candidate AIDS vaccines. HIV-1 clade A (HIV-A) predominates in parts of Africa. We constructed an R5 clade A SHIV (SHIV-A; strain SHIV-KNH1144) carrying env from a Kenyan HIV-A. SHIV-A underwent rapid serial passage through six RMs. To allow unbridled replication without adaptive immunity, we simultaneously ablated CD8 + and B cells with cytotoxic monoclonal antibodies in the next RM, resulting in extremely high viremia and CD4 + T-cell loss. Infected blood was then transferred into two non-immune-depleted RMs, where progeny SHIV-A showed increased replicative capacity and caused AIDS. We reisolated SHIV-KNH1144p4, which was replication competent in peripheral blood mononuclear cells (PBMC) of all RMs tested. Next-generation sequencing of early- and late-passage SHIV-A strains identified mutations that arose due to “fitness” virus optimization in the former and mutations exhibiting signatures typical for adaptive host immunity in the latter. “Fitness” mutations are best described as mutations that allow for better fit of the HIV-A Env with SIV-derived virion building blocks or host proteins and mutations in noncoding regions that accelerate virus replication, all of which result in the outgrowth of virus variants in the absence of adaptive T-cell and antibody-mediated host immunity. IMPORTANCE In this study, we constructed a simian-human immunodeficiency virus carrying an R5 Kenyan HIV-1 clade A env (SHIV-A). To bypass host immunity, SHIV-A was rapidly passaged in naive macaques or animals depleted of both CD8 + and B cells. Next-generation sequencing identified different mutations that resulted from optimization of viral replicative fitness either in the absence of adaptive immunity or due to pressure from adaptive immune responses.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 12 ( 2021-8-3)
    Abstract: Understanding the interplay between systemic and mucosal anti-HIV antibodies can provide important insights to develop new prevention strategies. We used passive immunization via systemic and/or mucosal routes to establish cause-and-effect between well-characterized monoclonal antibodies and protection against intrarectal (i.r.) SHIV challenge. In a pilot study, for which we re-used animals previously exposed to SHIV but completely protected from viremia by different classes of anti-HIV neutralizing monoclonal antibodies (mAbs), we made a surprise finding: low-dose intravenous (i.v.) HGN194-IgG1, a human neutralizing mAb against the conserved V3-loop crown, was ineffective when given alone but protected 100% of animals when combined with i.r. applied HGN194-dIgA2 that by itself had only protected 17% of the animals. Here we sought to confirm the unexpected synergy between systemically administered IgG1 and mucosally applied dIgA HGN194 forms using six groups of naïve macaques (n=6/group). Animals received i.v. HGN194-IgG1 alone or combined with i.r.-administered dIgA forms; controls remained untreated. HGN194-IgG1 i.v. doses were given 24 hours before – and all i.r. dIgA doses 30 min before – i.r. exposure to a single high-dose of SHIV-1157ipEL-p. All controls became viremic. Among passively immunized animals, the combination of IgG1+dIgA2 again protected 100% of the animals. In contrast, single-agent i.v. IgG1 protected only one of six animals (17%) – consistent with our pilot data. IgG1 combined with dIgA1 or dIgA1+dIgA2 protected 83% (5/6) of the animals. The dIgA1+dIgA2 combination without the systemically administered dose of IgG1 protected 67% (4/6) of the macaques. We conclude that combining suboptimal antibody defenses at systemic and mucosal levels can yield synergy and completely prevent virus acquisition.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...