GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood Advances, American Society of Hematology, Vol. 7, No. 17 ( 2023-09-12), p. 5172-5186
    Abstract: Nodal peripheral T-cell lymphomas (PTCL), the most common PTCLs, are generally treated with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP)-based curative-intent chemotherapy. Recent molecular data have assisted in prognosticating these PTCLs, but most reports lack detailed baseline clinical characteristics and treatment courses. We retrospectively evaluated cases of PTCL treated with CHOP-based chemotherapy that had tumors sequenced by the Memorial Sloan Kettering Integrated Mutational Profiling of Actionable Cancer Targets next-generation sequencing panel to identify variables correlating with inferior survival. We identified 132 patients who met these criteria. Clinical factors correlating with an increased risk of progression (by multivariate analysis) included advanced-stage disease and bone marrow involvement. The only somatic genetic aberrancies correlating with inferior progression-free survival (PFS) were TP53 mutations and TP53/17p deletions. PFS remained inferior when stratifying by TP53 mutation status, with a median PFS of 4.5 months for PTCL with a TP53 mutation (n = 21) vs 10.5 months for PTCL without a TP53 mutation (n = 111). No TP53 aberrancy correlated with inferior overall survival (OS). Although rare (n = 9), CDKN2A-deleted PTCL correlated with inferior OS, with a median of 17.6 months vs 56.7 months for patients without CDKN2A deletions. This retrospective study suggests that patients with PTCL with TP53 mutations experience inferior PFS when treated with curative-intent chemotherapy, warranting prospective confirmation.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2023
    detail.hit.zdb_id: 2876449-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 40, No. 9 ( 2022-03-20), p. 997-1008
    Abstract: Dual targeting of the gastrointestinal stromal tumor (GIST) lineage-specific master regulators, ETV1 and KIT, by MEK and KIT inhibitors were synergistic preclinically and may enhance clinical efficacy. This trial was designed to test the efficacy and safety of imatinib plus binimetinib in first-line treatment of GIST. METHODS In this trial ( NCT01991379 ), treatment-naive adult patients with confirmed advanced GISTs received imatinib (400 mg once daily) plus binimetinib (30 mg twice daily), 28-day cycles. The primary end point was RECIST1.1 best objective response rate (ORR; complete response plus partial response [PR]). The study was designed to detect a 20% improvement in the ORR over imatinib alone (unacceptable rate of 45%; acceptable rate of 65%), using an exact binomial test, one-sided type I error of 0.08 and type II error of 0.1, and a planned sample size of 44 patients. Confirmed PR or complete response in 〉 24 patients are considered positive. Secondary end points included Choi and European Organisation for Research and Treatment of Cancer Response Rate, progression-free survival (PFS), overall survival (OS), pathologic responses, and toxicity. RESULTS Between September 15, 2014, and November 15, 2020, 29 of 42 evaluable patients with advanced GIST had confirmed RECIST1.1 PR. The best ORR was 69.0% (two-sided 95% CI, 52.9 to 82.4). Thirty-nine of 41 (95.1%) had Choi PR approximately 8 weeks. Median PFS was 29.9 months (95% CI, 24.2 to not estimable); median OS was not reached (95% CI, 50.4 to not estimable). Five of eight patients with locally advanced disease underwent surgery after treatment and achieved significant pathologic response (≥ 90% treatment effect). There were no unexpected toxicities. Grade 3 and 4 toxicity included asymptomatic creatinine phosphokinase elevation (79.1%), hypophosphatemia (14.0%), neutrophil decrease (9.3%), maculopapular rash (7.0%), and anemia (7.0%). CONCLUSION The study met the primary end point. The combination of imatinib and binimetinib is effective with manageable toxicity and warrants further evaluation in direct comparison with imatinib in frontline treatment of GIST.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2022
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Annals of Surgical Oncology, Springer Science and Business Media LLC, Vol. 29, No. 13 ( 2022-12), p. 8373-8382
    Type of Medium: Online Resource
    ISSN: 1068-9265 , 1534-4681
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2074021-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. 4366-4366
    Abstract: Mutational hotspots indicate selective pressure across a population of tumor samples and drive the dysregulation of proliferation, invasion, and apoptosis in many human tumors. We recently performed a comprehensive analysis of hotspot mutations in 11,000 retrospectively characterized primary untreated cancers, revealing widespread lineage diversity and mutational specificity. Yet, as broad-based clinical sequencing has begun to guide the routine care of patients, most clinically sequenced cancer patients present with recurrent or metastatic solid tumors. Furthermore, such tumors likely possess distinct mutational patterns driven by prior treatment exposure or treatment-associated evolution after diagnosis that are undetectable in primary untreated samples. We therefore sought to expand our analysis to incorporate such prospectively characterized active cancer patients as part of an ongoing initiative at Memorial Sloan Kettering Cancer Center. With nearly 10,000 patients profiled thus far, this growing prospective dataset with extensive clinical and treatment history is a transformative resource and the largest of its kind. Here, we combined these prospective data with retrospective studies to analyze the somatic mutational landscape of 21,000 cancer patients across 74 cancer types representing the broadest range of human malignancies characterized to date. We developed and applied a biologically and statistically principled computational model to identify hotspots mutated more frequently than would be expected in the absence of selection. This analysis uncovered hundreds of new biologically and therapeutically relevant candidate driver mutations for which targeted agents are currently being investigated in early phase trials. Indeed, we identify several hotspots in key effectors of PI3K and MAPK signaling with differential response in vitro to current investigational therapies suggesting mutant allele-specific therapeutic decisions may be warranted. In total, over half of all hotspot mutations identified were novel, including several novel hotspots in small GTPase RAC1 that are lineage specific and functionally distinct. Understanding the distinct molecular function of these mutations, and the specific mutant alleles at individual codons, is a necessary translational prerequisite for enabling precision oncology through clinical decision support for patients sequenced at the point of care. Citation Format: Matthew T. Chang, Sizhi Paul Gao, Tripti Shrestha Bhattarai, Tambudzai Shamu, Cyriac Kandoth, Saurabh Asthana, Jocelyn S. Chapman, JianJiong Gao, Nicholas D. Socci, Adam B. Olshen, David M. Hyman, Michael F. Berger, David B. Solit, Nikolaus D. Schultz, Barry S. Taylor. Identifying novel recurrent mutations reveals candidate actionable mutations. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;7 6(14 Suppl):Abstract nr 4366.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Urology, Ovid Technologies (Wolters Kluwer Health), Vol. 203, No. Supplement 4 ( 2020-04)
    Type of Medium: Online Resource
    ISSN: 0022-5347 , 1527-3792
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2020
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: JCO Clinical Cancer Informatics, American Society of Clinical Oncology (ASCO), , No. 4 ( 2020-11), p. 691-699
    Abstract: As data-sharing projects become increasingly frequent, so does the need to map data elements between multiple classification systems. A generic, robust, shareable architecture will result in increased efficiency and transparency of the mapping process, while upholding the integrity of the data. MATERIALS AND METHODS The American Association for Cancer Research’s Genomics Evidence Neoplasia Information Exchange (GENIE) collects clinical and genomic data for precision cancer medicine. As part of its commitment to open science, GENIE has partnered with the National Cancer Institute’s Genomic Data Commons (GDC) as a secondary repository. After initial efforts to submit data from GENIE to GDC failed, we realized the need for a solution to allow for the iterative mapping of data elements between dynamic classification systems. We developed the Linked Entity Attribute Pair (LEAP) database framework to store and manage the term mappings used to submit data from GENIE to GDC. RESULTS After creating and populating the LEAP framework, we identified 195 mappings from GENIE to GDC requiring remediation and observed a 28% reduction in effort to resolve these issues, as well as a reduction in inadvertent errors. These results led to a decrease in the time to map between OncoTree, the cancer type ontology used by GENIE, and International Classification of Disease for Oncology, 3rd Edition, used by GDC, from several months to less than 1 week. CONCLUSION The LEAP framework provides a streamlined mapping process among various classification systems and allows for reusability so that efforts to create or adjust mappings are straightforward. The ability of the framework to track changes over time streamlines the process to map data elements across various dynamic classification systems.
    Type of Medium: Online Resource
    ISSN: 2473-4276
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2020
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 5931-5931
    Abstract: Background: A major hurdle to the development of novel targeted therapies for bladder cancer is the lack of preclinical models that reflect the genomic and biological heterogeneity of this human disease. To address this deficiency, we generated and characterized a new collection of patient-derived organoid (PDO) and xenograft (PDX) models and then used these models to study the role of mutated kinases in bladder cancer pathogenesis and the potential clinical utility of HER2-targeted antibody-drug conjugates (ADC). Material and Methods: To define the landscape of HER2 and FGFR3 alterations in bladder cancer patients, we leveraged data generated by The Cancer Genome Atlas and multiple cohort subsets of the first 50,000 cancer patients enrolled in the MSK-IMPACT prospectively sequencing cohort. We successfully generated 19 PDOs and 34 PDXs that genetically and phenotypically reflect the molecular heterogeneity of human bladder cancers. A subset of these models was further characterized using a multiplatform approach, including bulk and single-cell DNA and RNA sequencing; and employed to study HER2 oncogenic dependence and sensitivity to multiple anti-HER2 targeted agents. Results: 16% and 24% of the patients in the prospective MSK bladder cancer cohort had oncogenic HER2 and FGFR3 alterations, respectively. HER2 alteration frequency varied significantly as a function of histology, while FGFR3 alteration were less common in all variant histologies as compared to UC, NOS. Analysis of 119 patients with paired primary/metastatic tumors noted HER2 and FGFR3 mutational discordance in over 35% and 10% respectively. Single-cell RNA seq and DNA seq analysis of 4 PDOs demonstrated high interpatient and intratumoral heterogeneity of HER2 expression and ERBB2 copy number. Our bladder cancer PDX models also demonstrated greater sensitivity to the HER2-targeted ADC trastuzumab deruxtecan (T-DXd) than to the kinase inhibitor neratinib, consistent with clinical data in bladder cancer patients. Conclusion: FGFR3 and HER2 are both commonly mutated in bladder cancer patients. We observed frequent discordance in HER2 mutational status between primary/metastatic pairs suggesting that the analysis of archival primary tumor tissue may fail to detect actionable genomic alterations when present in a subset of bladder cancer patients. Multi-omic single-cell analysis demonstrated significant interpatient and intratumor heterogeneity of HER2 expression and ERBB2 copy number gain. Preclinical evaluation of HER2-altered PDO/PDXs indicated significantly greater sensitivity to the HER2-directed ADC T-DXd compared to the HER kinase inhibitor neratinib, providing rationale for future clinical trials of HER2 ADCs in bladder cancer patients. Citation Format: Ziyu Chen, Xinran Tang, Eliyahu Havasov, Andrew Mcpherson, Carissa Chu, John R. Christin, Michael F. Berger, Nikolaus D. Schultz, Elisa de Stanchina, Michael M. Shen, Hikmat Al-Ahmadie, Kwanghee Kim, Gopa Iyer, David B. Solit. Characterizing tumor heterogeneity through bulk and single cell analysis of patient derived bladder cancer models [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5931.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 22, No. 18 ( 2016-09-15), p. 4623-4633
    Abstract: Purpose: Salivary duct carcinoma (SDC) is an aggressive salivary malignancy, which is resistant to chemotherapy and has high mortality rates. We investigated the molecular landscape of SDC, focusing on genetic alterations and gene expression profiles. Experimental Design: We performed whole-exome sequencing, RNA sequencing, and immunohistochemical analyses in 16 SDC tumors and examined selected alterations via targeted sequencing of 410 genes in a second cohort of 15 SDCs. Results: SDCs harbored a higher mutational burden than many other salivary carcinomas (1.7 mutations/Mb). The most frequent genetic alterations were mutations in TP53 (55%), HRAS (23%), PIK3CA (23%), and amplification of ERBB2 (35%). Most (74%) tumors had alterations in either MAPK (BRAF/HRAS/NF1) genes or ERBB2. Potentially targetable alterations based on supportive clinical evidence were present in 61% of tumors. Androgen receptor (AR) was overexpressed in 75%; several potential resistance mechanisms to androgen deprivation therapy (ADT) were identified, including the AR-V7 splice variant (present in 50%, often at low ratios compared with full-length AR) and FOXA1 mutations (10%). Consensus clustering and pathway analyses in transcriptome data revealed striking similarities between SDC and molecular apocrine breast cancer. Conclusions: This study illuminates the landscape of genetic alterations and gene expression programs in SDC, identifying numerous molecular targets and potential determinants of response to AR antagonism. This has relevance for emerging clinical studies of ADT and other targeted therapies in SDC. The similarities between SDC and apocrine breast cancer indicate that clinical data in breast cancer may generate useful hypotheses for SDC. Clin Cancer Res; 22(18); 4623–33. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 3628-3628
    Abstract: Although the majority of cancer genes show a high degree of specificity for certain lineages, genomic profiling of cancer patients routinely identify alterations in genes that are atypical to the presented cancer type but are canonical drivers in a different lineage. It is often unclear if these atypical drivers arose early in tumorigenesis or were acquired during progression. A complete understanding of lineage associated genes (LAGs) will enable better interpretation of the molecular etiology of each diagnosed tumor. Here, we used a cohort of 38,912 patients across 122 cancer histologies (each with 50 or more patients) profiled for somatic alterations (mutations, copy number alterations and gene fusions) using the MSK-IMPACT assay. Tumors with TMB & gt; 15 were already excluded. All alterations were classified as drivers using OncoKB. Allele-specific copy number calls were assessed using FACETS. Overall, 95% of patients harbored at least one oncogenic alteration, with a median of 4 drivers per tumor. We observed widespread prevalence of drivers across lineages with each gene mutated in a median of 36 different lineages. Conversely, a median of 103 genes were mutated at least once in each lineage. Hypothesizing that cancer genes are influenced by cell of origin, we sought to identify lineages harboring significantly higher rates of drivers in a given gene compared to its pancancer driver rate. We identified 1781 significant (adjusted P & lt; 0.05) gene and lineage associations, and an additional 109 involving genes mutated at & gt;10% in the respective lineages but which did not reach significance were also included. Lineage-agnostic genes such as TP53 and CDKN2A were associated with a broad spectrum of lineages (90 and 55, respectively). However, overall, each gene we profiled was found to be associated with a median of 3 distinct lineages. For example, while BRAF drivers are found in nearly all histologies (n=91), it is enriched for drivers in only 8 lineages: melanoma (acral and cutaneous), thyroid (poorly differentiated, anaplastic and papillary) and bowel (mucinous adenocarc. of colon/rectum, colon adenocarc. and neuroendocrine carc. of colon/rectum). In all, nearly a third of all drivers were observed in non-associated lineages. We next compared the somatic properties of drivers among genes in associated lineages vs. the same genes in non-associated lineages. We observed that mutations in LAGs were more often clonal (83% vs. 73%, associated vs. non-associated, P = 0) and showed enrichment for mutant allele imbalance in oncogenes (40% vs. 23%, P = 2e-111) and biallelic inactivation in tumor suppressor LAGs (71% vs. 58%, P = 4e-130). Furthermore, 93% of all OncoKB Level 1/2/3A actionable alterations, which are classified based on their histology, were in LAGs. In conclusion, our findings enable classification of drivers that are relevant for lineage-specific malignant transformation and advance our understanding of tumor biology. Citation Format: Chaitanya Bandlamudi, Walid K. Chatila, Shaleigh A. Smith, Subhiksha Nandakumar, Craig Bielski, Bastien Nguyen, Henry S. Walch, Christoph K. Kreitzer, Kanika S. Arora, Tran Thinh Ngoc, Miika Mehine, Irina Ostrovnaya, Ino de Bruijn, Hyung Jun Woo, Ritika Kundra, Christopher J. Fong, Satshil Rana, Gaofei Zhao, Mingxuan Zhang, Mark R. Zucker, Hongxin Zhang, Ryan Ptashkin, Rose Brannon, Eduard Reznik, JianJiong Gao, Maria E. Arcila, Ryma Benayed, Debyani Chakravarty, David Solit, Mark T. Donoghue, Marc Ladanyi, Nikolaus D. Schultz, Michael F. Berger, Ahmet Zehir. Comprehensive identification of lineage associated cancer genes in 122 histologies [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 3628.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2022
    In:  Cancer Research Vol. 82, No. 12_Supplement ( 2022-06-15), p. 1181-1181
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 1181-1181
    Abstract: Background: The clinical development of farnesyltransferase inhibitors (FTIs) as targeted therapy for HRAS-mutant cancers has demonstrated mixed responses dependent on cancer type. Co-occurring mutations may affect tumor response, supported by previous studies demonstrating that NF1 mutations confer resistance to HRAS inhibition by the FTI tipifarnib in thyroid cancer mouse models. We aimed to determine if PI3K pathway activating mutations altered responses to targeted therapy in HRAS-mutant cancers. Methods: Targeted sequencing data from MSK-IMPACT cohort and DFCI-GENIE (Version 9.0) database was used to investigate co-mutations amongst HRAS-mutant cancers. Fisher’s exact test was used to determine co-altered mutations found predominantly in HRAS-mutant cancers relative to respective KRAS- and NRAS-mutant cancers. ‘RASless’ (KRASlox/HRASKO/NRASKO) mouse embryonic fibroblasts (MEFs) were obtained that in the presence of 600nM tamoxifen (4OHT) resulted in a KRAS knock-out. ‘Rasless’ MEFs were transfected with HRASG13R to create a system for testing sensitivity to FTIs in the presence or absence of WT KRAS, or with concurrent PTEN loss generated by CRISPR-Cas9 technology. Results: A greater proportion of HRAS-mutant cancers had co-altered mutations (48.8%) in genes encoding effectors in the MAPK, PI3K or RTK pathways compared to KRAS- and NRAS-mutant cancers (41.4% and 38.4%, respectively; p & lt;0.05). PTEN mutations were more prevalent in HRAS-mutant NSCLC (21%) compared to KRAS- and NRAS-mutant NSCLC (1% and 2%, respectively; p & lt;0.05). Non-transfected MEFs were sensitized to tipifarnib by introduction of a HRASG13R allele in non-4OHT (IC50: MEF= & gt;3uM, HRASG13R = 324.7nM) and 4OHT (IC50: MEF= & gt;3uM, HRASG13R= 0.62nM; p & lt;0.001) conditions, indicating that WT KRAS confers a relative resistance to the inhibitory effects of the FTI on HRAS. PTEN loss-of-function mutations led to tipifarnib resistance in HRASG13R MEFs in the absence (IC50: & gt;3uM; p & lt;0.001) or presence of 4OHT (IC50: 213.6nM; p & lt;0.001). Combined treatment of HRASG13R/PTEN MEFs with the PIK3CB-specific inhibitor AZD8186 and tipifarnib sensitized cells in non-4OHT (IC50- 100nM:100nM Tipifarnib:AZD8186) and 4OHT (IC50- 100nM:10nM Tipifarnib:AZD8186) conditions. Conclusions: Co-altered mutations of MAPK, PI3K or RTK effectors are found more commonly in HRAS than in KRAS or NRAS-mutant cancers. Co-alteration of PTEN preferentially associated with HRAS-mutations in NSCLC. Deletion of PTEN resulted in resistance to FTI targeted therapy in vitro. Co-altered mutations may predict sensitivity and resistance to FTIs and guide clinical trial design. Citation Format: Aradhya Nigam, Walid K. Chatila, Gnana P. Krishnamoorthy, Alan L. Ho, James A. Fagin, Nikolaus D. Schultz, Brian R. Untch. PTEN loss-of-function mutations prevalent in HRAS-mutant cancers results in resistance to targeted therapy [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 1181.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...