GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: International Journal of Radiation Biology, Informa UK Limited, Vol. 99, No. 7 ( 2023-07-03), p. 1096-1108
    Type of Medium: Online Resource
    ISSN: 0955-3002 , 1362-3095
    RVK:
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2023
    detail.hit.zdb_id: 3065-X
    detail.hit.zdb_id: 1498203-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Cancers Vol. 12, No. 2 ( 2020-02-11), p. 415-
    In: Cancers, MDPI AG, Vol. 12, No. 2 ( 2020-02-11), p. 415-
    Abstract: Radiation therapy (RT) is an important component of cancer therapy, with 〉 50% of cancer patients receiving RT. As the number of cancer survivors increases, the short- and long-term side effects of cancer therapy are of growing concern. Side effects of RT for thoracic tumors, notably cardiac and pulmonary toxicities, can cause morbidity and mortality in long-term cancer survivors. An understanding of the biological pathways and mechanisms involved in normal tissue toxicity from RT will improve future cancer treatments by reducing the risk of long-term side effects. Many of these mechanistic studies are performed in animal models of radiation exposure. In this area of research, the use of small animal image-guided RT with treatment planning systems that allow more accurate dose determination has the potential to revolutionize knowledge of clinically relevant tumor and normal tissue radiobiology. However, there are still a number of challenges to overcome to optimize such radiation delivery, including dose verification and calibration, determination of doses received by adjacent normal tissues that can affect outcomes, and motion management and identifying variation in doses due to animal heterogeneity. In addition, recent studies have begun to determine how animal strain and sex affect normal tissue radiation injuries. This review article discusses the known and potential benefits and caveats of newer technologies and methods used for small animal radiation delivery, as well as how the choice of animal models, including variables such as species, strain, and age, can alter the severity of cardiac radiation toxicities and impact their clinical relevance.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: JACC: CardioOncology, Elsevier BV, Vol. 3, No. 1 ( 2021-03), p. 113-130
    Type of Medium: Online Resource
    ISSN: 2666-0873
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 3040527-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancers, MDPI AG, Vol. 12, No. 4 ( 2020-04-16), p. 983-
    Abstract: While radiation therapy (RT) can improve cancer outcomes, it can lead to radiation-induced heart dysfunction (RIHD) in patients with thoracic tumors. This study examines the role of adaptive immune cells in RIHD. In Salt-Sensitive (SS) rats, image-guided whole-heart RT increased cardiac T-cell infiltration. We analyzed the functional requirement for these cells in RIHD using a genetic model of T- and B-cell deficiency (interleukin-2 receptor gamma chain knockout (IL2RG−/−)) and observed a complex role for these cells. Surprisingly, while IL2RG deficiency conferred protection from cardiac hypertrophy, it worsened heart function via echocardiogram three months after a large single RT dose, including increased end-systolic volume (ESV) and reduced ejection fraction (EF) and fractional shortening (FS) (p 〈 0.05). Fractionated RT, however, did not yield similarly increased injury. Our results indicate that T cells are not uniformly required for RIHD in this model, nor do they account for our previously reported differences in cardiac RT sensitivity between SS and SS.BN3 rats. The increasing use of immunotherapies in conjunction with traditional cancer treatments demands better models to study the interactions between immunity and RT for effective therapy. We present a model that reveals complex roles for adaptive immune cells in cardiac injury that vary depending on clinically relevant factors, including RT dose/fractionation, sex, and genetic background.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Frontiers Media SA ; 2020
    In:  Frontiers in Cardiovascular Medicine Vol. 7 ( 2020-2-21)
    In: Frontiers in Cardiovascular Medicine, Frontiers Media SA, Vol. 7 ( 2020-2-21)
    Type of Medium: Online Resource
    ISSN: 2297-055X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2020
    detail.hit.zdb_id: 2781496-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Frontiers Media SA ; 2020
    In:  Frontiers in Cardiovascular Medicine Vol. 7 ( 2020-3-5)
    In: Frontiers in Cardiovascular Medicine, Frontiers Media SA, Vol. 7 ( 2020-3-5)
    Type of Medium: Online Resource
    ISSN: 2297-055X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2020
    detail.hit.zdb_id: 2781496-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2021
    In:  Cancer Research Vol. 81, No. 5_Supplement ( 2021-03-01), p. IA004-IA004
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 5_Supplement ( 2021-03-01), p. IA004-IA004
    Abstract: Objectives: The tumor microenvironment (TME) can impact breast cancer tumor growth, progression, and treatment responses. Data suggests that genetic variants in not only breast cancer cells, but also in the TME, can also alter these processes. We have utilized a Consomic Xenograft Model (CXM), which maps germline variants that impact only the TME, as well as a species-specific RNA-seq (SSRS) protocol which allows detection of expression changes in the malignant and nonmalignant cellular compartments of tumor xenografts, in parallel to identify genetic variants in the TME that affect radiation sensitivity. Materials/Methods: Human triple negative breast cancer MDA-MD-231 cells were implanted into immunodeficient (IL2RG KO) consomic rat strains that are genetically identical except for chromosome 3 is inherited from a separate strain (SS and SS.BN3 strains). On day 10, tumors were treated with 3 daily ionizing radiation (IR) treatments of 4 Gy or sham, and tumor growth was monitored. Tumors were also harvested for hypoxia staining using pimonidazole or for RNA-seq. RNA-Seq was performed and a custom SSRS protocol was used to align both rat and human transcripts. This yielded transcript and gene level estimated fold-change and adjusted p-values for human- and rat-derived transcripts separately. E077 mammary tumor cells were implanted into adult female immune competent C57/Bl6 mice. On day 5, tumors were treated with 5 daily IR treatments of 5 Gy or sham. Either vehicle or a mAb to the Notch ligand Dll4 (Genentech) was given twice weekly. Chi-square, Fisher’s exact, and Kolmogorov-Smirnov tests and empirical cumulative distribution plots for differential expression significance values were performed. Results: Using CXM, we discovered that BN strain-derived genetic variant(s) on rat chromosome 3 are important for tumor IR sensitivity, as human breast cancer xenografts in the consomic strain (SS.BN3) were significantly more IR sensitive than SS rat strain tumors (supra-additive). Vascular gene pathways were differentially expressed, and tumor vascular phenotypes were distinct, with SS.BN3 tumors with increased but poorly functioning blood vessels. Hypoxia was similar at baseline, but increased in SS.BN3 tumors following IR. These results were consistent with less Dll4 expression in the SS.BN3 TME. The use of a Dll4-targeted mAb in mice demonstrated that targeting Dll4 enhanced mammary tumor IR responses. Conclusion: CXM demonstrated TME genetic variants can affect IR sensitivity of genetically identical tumor cells. Using SSRS, we identified candidate genes on rat chromosome 3 that may potentially influence IR sensitivity, and our studies ultimately led to identification of the Notch ligand Dll4 as a target to enhance breast cancer IR responses. Future studies will investigate the possibility of the Dll4 pathway as a therapeutic target, as well as interrogate other pathways responsible for changes in IR sensitivity seen in the CXM model. Determining TME factors that affect the IR sensitivity will allow more tailored and effective treatments. Citation Format: Carmen Bergom, Michael W. Straza, Amy Rymaszewski, Anne Frei, Angela Lemke, Rachel A. Schlaak, Shirng-Wern Tsaih, Michael J. Flister. Genetic variants in the tumor microenvironment alter radiation responses in breast cancer [abstract]. In: Proceedings of the AACR Virtual Special Conference on the Evolving Tumor Microenvironment in Cancer Progression: Mechanisms and Emerging Therapeutic Opportunities; in association with the Tumor Microenvironment (TME) Working Group; 2021 Jan 11-12. Philadelphia (PA): AACR; Cancer Res 2021;81(5 Suppl):Abstract nr IA004.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 4165-4165
    Abstract: Purpose/Objectives: Over 50% of breast cancer patients receive radiation therapy, but radiation doses can be limited by normal tissue toxicity. Radiation therapy can improve breast cancer-specific survival, but cardiac morbidity can be increased in patients with left-sided tumors. We used rat genetic models to identify targets to improve the therapeutic ratio of radiation. We assessed the radiation responsiveness of mammary tumors and the heart in genetically similar consomic rats conducive to genetic mapping. Materials/Methods: Female SS rats and SS.BN3 consomic rats, which are genetically identical to SS rats except that chromosome 3 is inherited from the BN strain, have previously been shown to exhibit different vascular dynamics and breast tumor growth. Human MDA-MD-231 cells or syngeneic mammary tumor cells developed from DMBA-induced mammary tumors were implanted orthotopically into immunodeficient or immunocompetent SS and SS.BN3 rats, respectively, and tumors were treated locally with mock or 5x4 Gy. To examine cardiac toxicity, adult female SS and SS.BN3 rats received image-guided localized whole-heart radiation to a dose of 24 Gy or 9 Gy x 5 (AP and 2 lateral fields, weighted 1:1:1). Echocardiograms with strain analysis were performed at baseline, 3 months and 5 months. The Student's t-test was used to compare values. Results: The BN strain-derived genetic variant(s) on rat chromosome 3 is important for tumor radiation sensitivity. Tumors in SS.BN3 rats were significantly more radiosensitive than tumors in the parental SS strain. A supra-additive effect was seen with both tumor cell lines, with recurrence-free survival of 30% vs. 67% at 137 days in SS vs SS.BN3 rats (p=0.02) in xenografts, and recurrence-free survival of 9% vs. 100% at 141 days in SS vs. SS.BN3 rats (p & lt;0.0001) in syngeneic tumors. The SS female rats that received 24 Gy exhibited enhanced cardiac toxicity compared to SS.BN3 rats, with larger pericardial effusions in SS vs SS.BN3 rats (p & lt;0.05), significantly elevated end diastolic volume (EDV) and end systolic volume (ESV) at 5 months (EDV: 0.62 vs. 0.49 mL, p & lt;0.01; ESV: 0.12 vs. 0.03 mL, p & lt;0.01), and increased cardiac mortality (5/11 SS vs. 0/7 SS.BN3 rats). Fractionated heart radiation yielded similar results. Taken together, the SS.BN3 tumors are more sensitive to radiation, while the hearts of SS.BN3 rats are protected against radiation toxicity, when compared to the SS strain. Conclusions: These results demonstrate that genetic variants on rat chromosome 3 alter the sensitivity to radiation therapy, enhancing tumor responses to radiation and protecting the heart, thus improving the therapeutic ratio. Gene expression analysis and genetic mapping will be performed to identify the causative target(s). This project has the potential to enhance the effectiveness and toxicity profile of radiation therapy in breast cancer. Citation Format: Rachel A. Schlaak, Anne Frei, Aronne M. Schottstaedt, Brian L. Fish, Leanne Harmann, Tracy Gasperetti, Michael J. Flister, Meetha Medhora, Jennifer L. Strande, Carmen R. Bergom. Novel genetic rat models to identify factors that modulate cardiac and tumor radiation sensitivity [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 4165.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 316, No. 6 ( 2019-06-01), p. H1267-H1280
    Abstract: Radiation therapy is used in ~50% of cancer patients to reduce the risk of recurrence and in some cases improve survival. Despite these benefits, doses can be limited by toxicity in multiple organs, including the heart. The underlying causes and biomarkers of radiation-induced cardiotoxicity are currently unknown, prompting the need for experimental models with inherent differences in sensitivity and resistance to the development of radiation-induced cardiotoxicity. We have identified the parental SS (Dahl salt-sensitive/Mcwi) rat strain to be a highly-sensitized model of radiation-induced cardiotoxicity. In comparison, substitution of rat chromosome 3 from the resistant BN (Brown Norway) rat strain onto the SS background (SS-3 BN consomic) significantly attenuated radiation-induced cardiotoxicity. SS-3 BN rats had less radiation-induced cardiotoxicity than SS rats, as measured by survival, pleural and pericardial effusions, echocardiogram parameters, and histological damage. Mast cells, previously shown to have predominantly protective roles in radiation-induced cardiotoxicity, were increased in the more resistant SS-3 BN hearts postradiation. RNA sequencing from SS and SS-3 BN hearts at 1 wk postradiation revealed 5,098 differentially expressed candidate genes across the transcriptome and 350 differentially expressed genes on rat chromosome 3, which coincided with enrichment of multiple pathways, including mitochondrial dysfunction, sirtuin signaling, and ubiquitination. Upstream regulators of enriched pathways included the oxidative stress modulating transcription factor, Nrf2, which is located on rat chromosome 3. Nrf2 target genes were also differentially expressed in the SS vs. SS-3 BN consomic hearts postradiation. Collectively, these data confirm the existence of heritable modifiers in radiation-induced cardiotoxicity and provide multiple biomarkers, pathways, and candidate genes for future analyses. NEW & NOTEWORTHY This novel study reveals that heritable genetic factors have the potential to modify normal tissue sensitivity to radiation. Gene variant(s) on rat chromosome 3 can contribute to enhanced cardiotoxicity displayed in the SS rats vs. the BN and SS-3 BN consomic rats. Identifying genes that lead to understanding the mechanisms of radiation-induced cardiotoxicity represents a novel method to personalize radiation treatment, as well as predict the development of radiation-induced cardiotoxicity.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2019
    detail.hit.zdb_id: 603838-4
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...