GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2018
    In:  mBio Vol. 9, No. 6 ( 2018-12-21)
    In: mBio, American Society for Microbiology, Vol. 9, No. 6 ( 2018-12-21)
    Abstract: Small regulatory RNAs play an important role in the adaptation to changing conditions. Here, we describe a differentially expressed small regulatory RNA (sRNA) that affects various cellular processes in the plant pathogen Agrobacterium tumefaciens . Using a combination of bioinformatic predictions and comparative proteomics, we identified nine targets, most of which are positively regulated by the sRNA. According to these targets, we named the sRNA PmaR for peptidoglycan biosynthesis, motility, and ampicillin resistance regulator. Agrobacterium spp. are long known to be naturally resistant to high ampicillin concentrations, and we can now explain this phenotype by the positive PmaR-mediated regulation of the beta-lactamase gene ampC . Structure probing revealed a spoon-like structure of the sRNA, with a single-stranded loop that is engaged in target interaction in vivo and in vitro . Several riboregulators have been implicated in antibiotic resistance mechanisms, such as uptake and efflux transporters, but PmaR represents the first example of an sRNA that directly controls the expression of an antibiotic resistance gene. IMPORTANCE The alphaproteobacterium Agrobacterium tumefaciens is able to infect various eudicots causing crown gall tumor formation. Based on its unique ability of interkingdom gene transfer, Agrobacterium serves as a crucial biotechnological tool for genetic manipulation of plant cells. The presence of hundreds of putative sRNAs in this organism suggests a considerable impact of riboregulation on A. tumefaciens physiology. Here, we characterized the biological function of the sRNA PmaR that controls various processes crucial for growth, motility, and virulence. Among the genes directly targeted by PmaR is ampC coding for a beta-lactamase that confers ampicillin resistance, suggesting that the sRNA is crucial for fitness in the competitive microbial composition of the rhizosphere.
    Type of Medium: Online Resource
    ISSN: 2161-2129 , 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2013
    In:  Journal of Bacteriology Vol. 195, No. 9 ( 2013-05), p. 1912-1919
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 195, No. 9 ( 2013-05), p. 1912-1919
    Abstract: The outer membrane is the first line of defense for Gram-negative bacteria and serves as a major barrier for antibiotics and other harmful substances. The biosynthesis of lipopolysaccharides (LPS), the essential component of the outer membrane, must be tightly controlled as both too much and too little LPS are toxic. In Escherichia coli , the cellular level of the key enzyme LpxC, which catalyzes the first committed step in LPS biosynthesis, is adjusted by proteolysis carried out by the essential and membrane-bound protease FtsH. Here, we demonstrate that LpxC is degraded in a growth rate-dependent manner with half-lives between 4 min and 〉 2 h. According to the cellular demand for LPS biosynthesis, LpxC is degraded during slow growth but stabilized when cells grow rapidly. Disturbing the balance between LPS and phospholipid biosynthesis in favor of phospholipid production in an E. coli strain encoding a hyperactive FabZ protein abolishes growth rate dependency of LpxC proteolysis. Lack of the alternative sigma factor RpoS or inorganic polyphosphates, which are known to mediate growth rate-dependent gene regulation in E. coli , did not affect proteolysis of LpxC. In contrast, absence of RelA and SpoT, which synthesize the alarmone (p)ppGpp, deregulated LpxC degradation resulting in rapid proteolysis in fast-growing cells and stabilization during slow growth. Our data provide new insights into the essential control of LPS biosynthesis in E. coli .
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2013
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 12 ( 2021-6-4)
    Abstract: Lipolytic enzymes are produced by animals, plants and microorganisms. With their chemo-, regio-, and enantio-specific characteristics, lipolytic enzymes are important biocatalysts useful in several industrial applications. They are widely used in the processing of fats and oils, detergents, food processing, paper and cosmetics production. In this work, we used a new functional metaproteomics approach to screen sediment samples of the Indian Bakreshwar hot spring for novel thermo- and solvent-stable lipolytic enzymes. We were able to identify an enzyme showing favorable characteristics. DS-007 showed high hydrolytic activity with substrates with shorter chain length ( & lt;C 8 ) with the maximum activity observed against p-nitrophenyl butyrate (C 4 ). For substrates with a chain length & gt;C 10 , significantly less hydrolytic activity was observed. A preference for short chain acyl groups is characteristic for esterases, suggesting that DS-007 is an esterase. Consistent with the high temperature at its site of isolation, DS-007 showed a temperature optimum at 55°C and retained 80% activity even after prolonged exposure to temperatures as high as 60°C. The enzyme showed optimum activity at pH 9.5, with more than 50% of its optimum activity between pH 8.0 and pH 9.5. DS-007 also exhibited tolerance toward organic solvents at a concentration of 1% (v/v). One percent of methanol increased the activity of DS-007 by 40% in comparison to the optimum conditions without solvent. In the presence of 10% methanol, DMSO or isopropanol DS-007 still showed around 50% activity. This data indicates that DS-007 is a temperature- and solvent-stable thermophilic enzyme with reasonable activity even at lower temperatures as well as a catalyst that can be used at a broad range of pH values with an optimum in the alkaline range, showing the adaptation to the habitat’s temperature and alkaline pH.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2017
    In:  Frontiers in Molecular Biosciences Vol. 4 ( 2017-02-28)
    In: Frontiers in Molecular Biosciences, Frontiers Media SA, Vol. 4 ( 2017-02-28)
    Type of Medium: Online Resource
    ISSN: 2296-889X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2017
    detail.hit.zdb_id: 2814330-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Microbiome, Springer Science and Business Media LLC, Vol. 5, No. 1 ( 2017-12)
    Type of Medium: Online Resource
    ISSN: 2049-2618
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2697425-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Wiley ; 2016
    In:  PROTEOMICS – Clinical Applications Vol. 10, No. 9-10 ( 2016-10), p. 1036-1048
    In: PROTEOMICS – Clinical Applications, Wiley, Vol. 10, No. 9-10 ( 2016-10), p. 1036-1048
    Abstract: Trimethoprim is a folate biosynthesis inhibitor. Tetrahydrofolates are essential for the transfer of C 1 units in several biochemical pathways including purine, thymine, methionine, and glycine biosynthesis. This study addressed the effects of folate biosynthesis inhibition on bacterial physiology. Experimental design Two complementary proteomic approaches were employed to analyze the response of Bacillus subtilis to trimethoprim. Acute changes in protein synthesis rates were monitored by radioactive pulse labeling of newly synthesized proteins and subsequent 2DE analysis. Changes in protein levels were detected using gel‐free quantitative MS. Results Proteins involved in purine and histidine biosynthesis, the σ B ‐dependent general stress response, and sporulation were upregulated. Most prominently, the PurR‐regulon required for de novo purine biosynthesis was derepressed indicating purine depletion. The general stress response was activated energy dependently and in a subpopulation of treated cultures an early onset of sporulation was observed, most likely triggered by low guanosine triphosphate levels. Supplementation of adenosine triphosphate, adenosine, and guanosine to the medium substantially decreased antibacterial activity, showing that purine depletion becomes the bottleneck in trimethoprim‐treated B. subtilis . Conclusions and clinical relevance The frequently prescribed antibiotic trimethoprim causes purine depletion in B. subtilis , which can be complemented by supplementing purines to the medium.
    Type of Medium: Online Resource
    ISSN: 1862-8346 , 1862-8354
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 2317130-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: PROTEOMICS, Wiley, Vol. 21, No. 1 ( 2021-01)
    Abstract: Identification of the molecular target is a crucial step in evaluating novel antibiotics. To support target identification, a label‐free method based on chromatographic co‐elution has previously been developed. Target identification by chromatographic coelution (TICC) exploits the alteration of the elution profile of target‐bound drug versus free drug in ion exchange (IEX) chromatography to identify potential target proteins from elution fractions. The applicability of TICC for antibiotic research is investigated by evaluating which proteins, that is, putative targets, can be monitored in Bacillus subtilis . Coelution of components of known protein complexes provides a read‐out for how well the native state of proteins is conserved during chromatography. Rifampicin, which targets RNA polymerase, is used in a proof‐of‐concept study.
    Type of Medium: Online Resource
    ISSN: 1615-9853 , 1615-9861
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2037674-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: mBio, American Society for Microbiology, Vol. 11, No. 3 ( 2020-06-30)
    Abstract: Antibiotic acyldepsipeptides (ADEPs) deregulate ClpP, the proteolytic core of the bacterial Clp protease, thereby inhibiting its native functions and concomitantly activating it for uncontrolled proteolysis of nonnative substrates. Importantly, although ADEP-activated ClpP is assumed to target multiple polypeptide and protein substrates in the bacterial cell, not all proteins seem equally susceptible. In Bacillus subtilis , the cell division protein FtsZ emerged to be particularly sensitive to degradation by ADEP-activated ClpP at low inhibitory ADEP concentrations. In fact, FtsZ is the only bacterial protein that has been confirmed to be degraded in vitro as well as within bacterial cells so far. However, the molecular reason for this preferred degradation remained elusive. Here, we report the unexpected finding that ADEP-activated ClpP alone, in the absence of any Clp-ATPase, leads to an unfolding and subsequent degradation of the N-terminal domain of FtsZ, which can be prevented by the stabilization of the FtsZ fold via nucleotide binding. At elevated antibiotic concentrations, importantly, the C terminus of FtsZ is notably targeted for degradation in addition to the N terminus. Our results show that different target structures are more or less accessible to ClpP, depending on the ADEP level present. Moreover, our data assign a Clp-ATPase-independent protein unfolding capability to the ClpP core of the bacterial Clp protease and suggest that the protein fold of FtsZ may be more flexible than previously anticipated. IMPORTANCE Acyldepsipeptide (ADEP) antibiotics effectively kill multidrug-resistant Gram-positive pathogens, including vancomycin-resistant enterococcus, penicillin-resistant Streptococcus pneumoniae (PRSP), and methicillin-resistant Staphylococcus aureus (MRSA). The antibacterial activity of ADEP depends on a new mechanism of action, i.e., the deregulation of bacterial protease ClpP that leads to bacterial self-digestion. Our data allow new insights into the mode of ADEP action by providing a molecular explanation for the distinct bacterial phenotypes observed at low versus high ADEP concentrations. In addition, we show that ClpP alone, in the absence of any unfoldase or energy-consuming system, and only activated by the small molecule antibiotic ADEP, leads to the unfolding of the cell division protein FtsZ.
    Type of Medium: Online Resource
    ISSN: 2161-2129 , 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 11 ( 2020-6-9)
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2020
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Biochimica et Biophysica Acta (BBA) - Biomembranes, Elsevier BV, Vol. 1860, No. 5 ( 2018-05), p. 1114-1124
    Type of Medium: Online Resource
    ISSN: 0005-2736
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 2209384-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...