GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Seismological Society of America (SSA) ; 2020
    In:  Seismological Research Letters Vol. 91, No. 3 ( 2020-05-01), p. 1567-1578
    In: Seismological Research Letters, Seismological Society of America (SSA), Vol. 91, No. 3 ( 2020-05-01), p. 1567-1578
    Abstract: The first Uniform California Earthquake Rupture Forecast, Version 3–epidemic-type aftershock sequence (UCERF3-ETAS) aftershock simulations were running on a high-performance computing cluster within 33 min of the 4 July 2019 M 6.4 Searles Valley earthquake. UCERF3-ETAS, an extension of the third Uniform California Earthquake Rupture Forecast (UCERF3), is the first comprehensive, fault-based, epidemic-type aftershock sequence (ETAS) model. It produces ensembles of synthetic aftershock sequences both on and off explicitly modeled UCERF3 faults to answer a key question repeatedly asked during the Ridgecrest sequence: What are the chances that the earthquake that just occurred will turn out to be the foreshock of an even bigger event? As the sequence unfolded—including one such larger event, the 5 July 2019 M 7.1 Ridgecrest earthquake almost 34 hr later—we updated the model with observed aftershocks, finite-rupture estimates, sequence-specific parameters, and alternative UCERF3-ETAS variants. Although configuring and running UCERF3-ETAS at the time of the earthquake was not fully automated, considerable effort had been focused in 2018 on improving model documentation and ease of use with a public GitHub repository, command line tools, and flexible configuration files. These efforts allowed us to quickly respond and efficiently configure new simulations as the sequence evolved. Here, we discuss lessons learned during the Ridgecrest sequence, including sensitivities of fault triggering probabilities to poorly constrained finite-rupture estimates and model assumptions, as well as implications for UCERF3-ETAS operationalization.
    Type of Medium: Online Resource
    ISSN: 0895-0695 , 1938-2057
    Language: English
    Publisher: Seismological Society of America (SSA)
    Publication Date: 2020
    detail.hit.zdb_id: 2403376-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Seismic Record, Seismological Society of America (SSA), Vol. 3, No. 2 ( 2023-04-01), p. 86-95
    Abstract: Earthquake forecasting models express hypotheses about seismogenesis that underpin global and regional probabilistic seismic hazard assessments (PSHAs). An implicit assumption is that the comparatively higher spatiotemporal resolution datasets from which regional models are generated lead to more informative seismicity forecasts than global models, which are however calibrated on greater datasets of large earthquakes. Here, we prospectively assess the ability of the Global Earthquake Activity Rate (GEAR1) model and 19 time-independent regional models to forecast M 4.95+ seismicity in California, New Zealand, and Italy from 2014 through 2021, using metrics developed by the Collaboratory for the Study of Earthquake Predictability (CSEP). Our results show that regional models that adaptively smooth small earthquake locations perform best in California and Italy during the evaluation period; however, GEAR1, based on global seismicity and geodesy datasets, performs surprisingly well across all testing regions, ranking first in New Zealand, second in California, and third in Italy. Furthermore, the performance of the models is highly sensitive to spatial smoothing, and the optimal smoothing likely depends on the regional tectonic setting. Acknowledging the limited prospective test data, these results provide preliminary support for using GEAR1 as a global reference M 4.95+ seismicity model that could inform eight-year regional and global PSHAs.
    Type of Medium: Online Resource
    ISSN: 2694-4006
    Language: English
    Publisher: Seismological Society of America (SSA)
    Publication Date: 2023
    detail.hit.zdb_id: 3114446-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Geophysical Journal International Vol. 233, No. 3 ( 2023-02-06), p. 2053-2066
    In: Geophysical Journal International, Oxford University Press (OUP), Vol. 233, No. 3 ( 2023-02-06), p. 2053-2066
    Abstract: The Collaboratory for the Study of Earthquake Predictability (CSEP) is an international effort to evaluate earthquake forecast models prospectively. In CSEP, one way to express earthquake forecasts is through a grid-based format: the expected number of earthquake occurrences within 0.1° × 0.1° spatial cells. The spatial distribution of seismicity is thereby evaluated using the Spatial test (S-test). The high-resolution grid combined with sparse and inhomogeneous earthquake distributions leads to a huge number of cells causing disparity in the number of cells, and the number of earthquakes to evaluate the forecasts, thereby affecting the statistical power of the S-test. In order to explore this issue, we conducted a global earthquake forecast experiment, in which we computed the power of the S-test to reject a spatially non-informative uniform forecast model. The S-test loses its power to reject the non-informative model when the spatial resolution is so high that every earthquake of the observed catalog tends to get a separate cell. Upon analysing the statistical power of the S-test, we found, as expected, that the statistical power of the S-test depends upon the number of earthquakes available for testing, e.g. with the conventional high-resolution grid for the global region, we would need more than 32 000 earthquakes in the observed catalog for powerful testing, which would require approximately 300 yr to record M ≥ 5.95. The other factor affecting the power is more interesting and new; it is related to the spatial grid representation of the forecast model. Aggregating forecasts on multi-resolution grids can significantly increase the statistical power of the S-test. Using the recently introduced Quadtree to generate data-based multi-resolution grids, we show that the S-test reaches its maximum power in this case already for as few as eight earthquakes in the test period. Thus, we recommend for future CSEP experiments the use of Quadtree-based multi-resolution grids, where available data determine the resolution.
    Type of Medium: Online Resource
    ISSN: 0956-540X , 1365-246X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 3042-9
    detail.hit.zdb_id: 2006420-2
    detail.hit.zdb_id: 1002799-3
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cell, Elsevier BV, Vol. 170, No. 1 ( 2017-06), p. 35-47.e13
    Type of Medium: Online Resource
    ISSN: 0092-8674
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 187009-9
    detail.hit.zdb_id: 2001951-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Seismological Society of America (SSA) ; 2022
    In:  Seismological Research Letters Vol. 93, No. 5 ( 2022-09-01), p. 2858-2870
    In: Seismological Research Letters, Seismological Society of America (SSA), Vol. 93, No. 5 ( 2022-09-01), p. 2858-2870
    Abstract: The Collaboratory for the Study of Earthquake Predictability (CSEP) is an open and global community whose mission is to accelerate earthquake predictability research through rigorous testing of probabilistic earthquake forecast models and prediction algorithms. pyCSEP supports this mission by providing open-source implementations of useful tools for evaluating earthquake forecasts. pyCSEP is a Python package that contains the following modules: (1) earthquake catalog access and processing, (2) representations of probabilistic earthquake forecasts, (3) statistical tests for evaluating earthquake forecasts, and (4) visualization routines and various other utilities. Most significantly, pyCSEP contains several statistical tests needed to evaluate earthquake forecasts, which can be forecasts expressed as expected earthquake rates in space–magnitude bins or specified as large sets of simulated catalogs (which includes candidate models for governmental operational earthquake forecasting). To showcase how pyCSEP can be used to evaluate earthquake forecasts, we have provided a reproducibility package that contains all the components required to re-create the figures published in this article. We recommend that interested readers work through the reproducibility package alongside this article. By providing useful tools to earthquake forecast modelers and facilitating an open-source software community, we hope to broaden the impact of the CSEP and further promote earthquake forecasting research.
    Type of Medium: Online Resource
    ISSN: 0895-0695 , 1938-2057
    Language: English
    Publisher: Seismological Society of America (SSA)
    Publication Date: 2022
    detail.hit.zdb_id: 2403376-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Seismological Society of America (SSA) ; 2020
    In:  Bulletin of the Seismological Society of America Vol. 110, No. 4 ( 2020-08-01), p. 1799-1817
    In: Bulletin of the Seismological Society of America, Seismological Society of America (SSA), Vol. 110, No. 4 ( 2020-08-01), p. 1799-1817
    Abstract: The 2019 Ridgecrest sequence provides the first opportunity to evaluate Uniform California Earthquake Rupture Forecast v.3 with epidemic-type aftershock sequences (UCERF3-ETAS) in a pseudoprospective sense. For comparison, we include a version of the model without explicit faults more closely mimicking traditional ETAS models (UCERF3-NoFaults). We evaluate the forecasts with new metrics developed within the Collaboratory for the Study of Earthquake Predictability (CSEP). The metrics consider synthetic catalogs simulated by the models rather than synoptic probability maps, thereby relaxing the Poisson assumption of previous CSEP tests. Our approach compares statistics from the synthetic catalogs directly against observations, providing a flexible approach that can account for dependencies and uncertainties encoded in the models. We find that, to the first order, both UCERF3-ETAS and UCERF3-NoFaults approximately capture the spatiotemporal evolution of the Ridgecrest sequence, adding to the growing body of evidence that ETAS models can be informative forecasting tools. However, we also find that both models mildly overpredict the seismicity rate, on average, aggregated over the evaluation period. More severe testing indicates the overpredictions occur too often for observations to be statistically indistinguishable from the model. Magnitude tests indicate that the models do not include enough variability in forecasted magnitude-number distributions to match the data. Spatial tests highlight discrepancies between the forecasts and observations, but the greatest differences between the two models appear when aftershocks occur on modeled UCERF3-ETAS faults. Therefore, any predictability associated with embedding earthquake triggering on the (modeled) fault network may only crystalize during the presumably rare sequences with aftershocks on these faults. Accounting for uncertainty in the model parameters could improve test results during future experiments.
    Type of Medium: Online Resource
    ISSN: 0037-1106 , 1943-3573
    Language: English
    Publisher: Seismological Society of America (SSA)
    Publication Date: 2020
    detail.hit.zdb_id: 2065447-9
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Seismological Society of America (SSA) ; 2023
    In:  Bulletin of the Seismological Society of America Vol. 113, No. 1 ( 2023-02-01), p. 333-347
    In: Bulletin of the Seismological Society of America, Seismological Society of America (SSA), Vol. 113, No. 1 ( 2023-02-01), p. 333-347
    Abstract: The Collaboratory for the Study of Earthquake Predictability (CSEP) is an international effort to evaluate probabilistic earthquake forecasting models. CSEP provides the cyberinfrastructure and testing methods needed to evaluate earthquake forecasts. The most common way to represent a probabilistic earthquake forecast involves specifying the average rate of earthquakes within discrete spatial cells, subdivided into magnitude bins. Typically, the spatial component uses a single-resolution Cartesian grid with spatial cell dimensions of 0.1° × 0.1° in latitude and longitude, leading to 6.48 million spatial cells for the global testing region. However, the quantity of data (e.g., number of earthquakes) available to generate and test a forecast model is usually several orders of magnitude less than the millions of spatial cells, leading to a huge disparity in the number of earthquakes and the number of cells in the grid. In this study, we propose the Quadtree to create multi-resolution grid, locally adjusted mirroring the available data for forecast generation and testing, thus providing a data-driven resolution of forecasts. The Quadtree is a hierarchical tree-based data structure used in combination with the Mercator projection to generate spatial grids. It is easy to implement and has numerous scientific and technological applications. To facilitate its application to end users, we integrated codes handling Quadtrees into pyCSEP, an open-source Python package containing tools for evaluating earthquake forecasts. Using a sample model, we demonstrate how forecast model generation can be improved significantly in terms of information gain if constrained on a multi-resolution grid instead of a high-resolution uniform grid. In addition, we demonstrate that multi-resolution Quadtree grids lead to reduced computational costs. Thus, we anitcipate that Quadtree grids will be useful for developing and evaluating earthquake forecasts.
    Type of Medium: Online Resource
    ISSN: 0037-1106 , 1943-3573
    Language: English
    Publisher: Seismological Society of America (SSA)
    Publication Date: 2023
    detail.hit.zdb_id: 2065447-9
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: The Lancet Respiratory Medicine, Elsevier BV, Vol. 5, No. 5 ( 2017-05), p. 412-425
    Type of Medium: Online Resource
    ISSN: 2213-2600
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Seismological Research Letters, Seismological Society of America (SSA), Vol. 89, No. 4 ( 2018-07), p. 1238-1250
    Type of Medium: Online Resource
    ISSN: 0895-0695 , 1938-2057
    Language: English
    Publisher: Seismological Society of America (SSA)
    Publication Date: 2018
    detail.hit.zdb_id: 2403376-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...