GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 125, No. 15 ( 2020-08-16)
    Abstract: We develop an online air‐sea exchange module for acetone, with ocean biogeochemistry represented using data‐oriented machine learning Two separate global acetone simulations are compared to global‐scale multiseasonal airborne observations Global models consistently overestimate acetone in the upper troposphere over the Southern Ocean in austral winter
    Type of Medium: Online Resource
    ISSN: 2169-897X , 2169-8996
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2020
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 102, No. D13 ( 1997-07-20), p. 16219-16236
    Abstract: Seven techniques for the field measurement of trace atmospheric SO 2 were compared simultaneously over 1 month in 1994 using samples produced in situ by dynamic dilution. Samples included SO 2 in dry air, in humid air, and in air with potentially interfering gases added. In addition, 2 days of comparison using diluted ambient air were conducted. Six of the seven techniques compared well, with good linear response and no serious interferences but with a range of calibration differences of about 50%.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1997
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    International Glaciological Society ; 1998
    In:  Annals of Glaciology Vol. 27 ( 1998), p. 305-310
    In: Annals of Glaciology, International Glaciological Society, Vol. 27 ( 1998), p. 305-310
    Abstract: Evidence from the Ross embayment, Antarctica, suggests an abrupt cooling and a concomitant increase in sea-ice cover at about 6000 BP (6 ka). Stable-isotope (δD) concentrations in the Taylor Dome ice core, at the western edge of the Ross embayment, decline rapidly after 6 ka, and continue to decline through the late Holocene. Methanesulfonic acid concentrations at Taylor Dome show opposite trends to δD Sediment cores from the western Ross Sea show a percentage minimum for the sea-ice diatom Fragilariopsis curta between 9 and 6 ka, whenTaylor Dome δD values are highest, followed by an increase through the late Holocene. Radiocarbon dates from raised beach deposits indicate that the retreat of ice shelves in the Ross embayment ceased at about 6 ka, coincident with the environmental changes inferred from the sediment and ice-core records. The similarity in timing suggests an important role for climate in controlling the evolution of ice-shelf margins following the end of the last glaciation.
    Type of Medium: Online Resource
    ISSN: 0260-3055 , 1727-5644
    Language: English
    Publisher: International Glaciological Society
    Publication Date: 1998
    detail.hit.zdb_id: 2122400-6
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Anthropocene, Elsevier BV, Vol. 12 ( 2015-12), p. 54-68
    Type of Medium: Online Resource
    ISSN: 2213-3054
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 2712850-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 103, No. D13 ( 1998-07-20), p. 16369-16383
    Abstract: The goals of the International Global Atmospheric Chemistry (IGAC) Program's First Aerosol Characterization Experiment (ACE 1) are to determine and understand the properties and controlling factors of the aerosol in the remote marine atmosphere that are relevant to radiative forcing and climate. A key question in terms of this goal and the overall biogeochemical sulfur cycle is what factors control the formation, growth, and evolution of particles in the marine boundary layer (MBL). To address this question, simultaneous measurements of dimethylsulfide (DMS), sulfur dioxide (SO 2 ), the aerosol chemical mass size distribution, and the aerosol number size distribution from 5 to 10,000 nm diameter were made on the National Oceanic and Atmospheric Administration (NOAA) ship Discoverer . From these data we conclude that the background MBL aerosol during ACE 1 often was composed of four distinct modes: an ultrafine (UF) mode ( D p = 5–20 nm), an Aitken mode ( D p = 20–80 nm), an accumulation mode ( D p = 80–300 nm), and a coarse mode ( D p 〉 300 nm). The presence of UF mode particles in the MBL could be explained by convective mixing between the free troposphere (FT) and the MBL associated with cloud pumping and subsidence following cold frontal passages. There was no evidence of major new particle production in the MBL. Oceanic emissions of DMS appeared to contribute to the growth of Aitken and accumulation mode particles. Coarse mode particles were comprised primarily of sea salt. Although these particles result from turbulence at the air‐sea interface, the instantaneous wind speed accounted for only one third of the variance in the coarse mode number concentration in this region.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1998
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Ocean Science, Copernicus GmbH, Vol. 12, No. 5 ( 2016-09-05), p. 1033-1048
    Abstract: Abstract. The flux of dimethylsulfide (DMS) to the atmosphere is generally inferred using water sampled at or below 2 m depth, thereby excluding any concentration anomalies at the air–sea interface. Two independent techniques were used to assess the potential for near-surface DMS enrichment to influence DMS emissions and also identify the factors influencing enrichment. DMS measurements in productive frontal waters over the Chatham Rise, east of New Zealand, did not identify any significant gradients between 0.01 and 6 m in sub-surface seawater, whereas DMS enrichment in the sea-surface microlayer was variable, with a mean enrichment factor (EF; the concentration ratio between DMS in the sea-surface microlayer and in sub-surface water) of 1.7. Physical and biological factors influenced sea-surface microlayer DMS concentration, with high enrichment (EF 〉 1.3) only recorded in a dinoflagellate-dominated bloom, and associated with low to medium wind speeds and near-surface temperature gradients. On occasion, high DMS enrichment preceded periods when the air–sea DMS flux, measured by eddy covariance, exceeded the flux calculated using National Oceanic and Atmospheric Administration (NOAA) Coupled-Ocean Atmospheric Response Experiment (COARE) parameterized gas transfer velocities and measured sub-surface seawater DMS concentrations. The results of these two independent approaches suggest that air–sea emissions may be influenced by near-surface DMS production under certain conditions, and highlight the need for further study to constrain the magnitude and mechanisms of DMS production in the sea-surface microlayer.
    Type of Medium: Online Resource
    ISSN: 1812-0792
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2183769-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2007
    In:  Science Vol. 317, No. 5843 ( 2007-09-07), p. 1381-1384
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 317, No. 5843 ( 2007-09-07), p. 1381-1384
    Abstract: Black carbon (BC) from biomass and fossil fuel combustion alters chemical and physical properties of the atmosphere and snow albedo, yet little is known about its emission or deposition histories. Measurements of BC, vanillic acid, and non–sea-salt sulfur in ice cores indicate that sources and concentrations of BC in Greenland precipitation varied greatly since 1788 as a result of boreal forest fires and industrial activities. Beginning about 1850, industrial emissions resulted in a sevenfold increase in ice-core BC concentrations, with most change occurring in winter. BC concentrations after about 1951 were lower but increasing. At its maximum from 1906 to 1910, estimated surface climate forcing in early summer from BC in Arctic snow was about 3 watts per square meter, which is eight times the typical preindustrial forcing value.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2007
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 105, No. D20 ( 2000-10-27), p. 24689-24712
    Abstract: We present a detailed evaluation of the atmospheric sulfur cycle simulated in the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. The model simulations of SO 2 , sulfate, dimethylsulfide (DMS), and methanesulfonic acid (MSA) are compared with observations from different regions on various timescales. The model agrees within 30% with the regionally averaged sulfate concentrations measured over North America and Europe but overestimates the SO 2 concentrations by more than a factor of 2 there. This suggests that either the emission rates are too high, or an additional loss of SO 2 which does not lead to a significant sulfate production is needed. The average wintertime sulfate concentrations over Europe in the model are nearly a factor of 2 lower than measured values, a discrepancy which may be attributed largely to the sea‐salt sulfate collected in the data. The model reproduces the sulfur distributions observed over the oceans in both long‐term surface measurements and short‐term aircraft campaigns. Regional budget analyses show that sulfate production from SO 2 oxidation is 2 to 3 times more efficient and the lifetimes of SO 2 and sulfate are nearly a factor of 2 longer over the ocean than over the land. This is due to a larger free tropospheric fraction of SO 2 column over the ocean than over the land, hence less loss to the surface. The North Atlantic and northwestern Pacific regions are heavily influenced by anthropogenic activities, with more than 60% of the total SO 2 originating from anthropogenic sources. The average production efficiency of SO 2 from DMS oxidation is estimated at 0.87 to 0.91 in most oceanic regions.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2000
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2018-02-19)
    Abstract: Biogenic sources contribute to cloud condensation nuclei (CCN) in the clean marine atmosphere, but few measurements exist to constrain climate model simulations of their importance. The chemical composition of individual atmospheric aerosol particles showed two types of sulfate-containing particles in clean marine air masses in addition to mass-based Estimated Salt particles. Both types of sulfate particles lack combustion tracers and correlate, for some conditions, to atmospheric or seawater dimethyl sulfide (DMS) concentrations, which means their source was largely biogenic. The first type is identified as New Sulfate because their large sulfate mass fraction (63% sulfate) and association with entrainment conditions means they could have formed by nucleation in the free troposphere. The second type is Added Sulfate particles (38% sulfate), because they are preexisting particles onto which additional sulfate condensed. New Sulfate particles accounted for 31% (7 cm −3 ) and 33% (36 cm −3 ) CCN at 0.1% supersaturation in late-autumn and late-spring, respectively, whereas sea spray provided 55% (13 cm −3 ) in late-autumn but only 4% (4 cm −3 ) in late-spring. Our results show a clear seasonal difference in the marine CCN budget, which illustrates how important phytoplankton-produced DMS emissions are for CCN in the North Atlantic.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1998
    In:  Journal of Geophysical Research: Atmospheres Vol. 103, No. D13 ( 1998-07-20), p. 16703-16711
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 103, No. D13 ( 1998-07-20), p. 16703-16711
    Abstract: Measurements of seawater dimethylsulfide (DMS), atmospheric dimethylsulfide, and sulfur dioxide (SO 2 ) were made on board the R/V Discoverer in the Southern Ocean, southeast of Australia, as part of the First Aerosol Characterization Experiment (ACE 1). The measurements covered a latitude range of 40°S–55°S during November‐December 1995. Seawater DMS concentrations ranged from 0.4 to 6.8 nM, with a mean of 1.7±1.1 nM (1σ). The highest DMS concentrations were found in subtropical convergence zone waters north of 44°S, and the lowest were found in polar waters south of 49°S. In general, seawater DMS concentrations increased during the course of the study, presumably due to the onset of austral spring warming. Atmospheric DMS concentrations ranged from 24 to 350 parts per trillion by volume (pptv), with a mean of 112±61 pptv (1σ). Atmospheric SO 2 was predominantly of marine origin with occasional anthropogenic input, as evidenced by correlation with elevated 222 Rn and air mass trajectories. Concentrations ranged from 3 to 1000 pptv with a mean of 48.8± 49 pptv (1σ) and a median 15.8 pptv. The mean SO 2 concentration observed in undisturbed marine air was 11.9±7.6 pptv (1σ), and the mean DMS to SO 2 ratio in these conditions was 13±9 (1σ). Diurnal variations in SO 2 were observed, with a daytime maximum and early morning minimum in agreement with model simulations of DMS oxidation in the marine boundary layer. Steady state calculations and photochemical box model simulations suggest that the DMS to SO 2 conversion efficiency in this region is 30–50%. Comparison of these results with results from warmer regions suggests that the DMS to SO 2 conversion efficiency has a positive temperature dependence.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1998
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...