GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Remote Sensing, MDPI AG, Vol. 15, No. 7 ( 2023-03-29), p. 1822-
    Abstract: Optical Earth Observation is often limited by weather conditions such as cloudiness. Radar sensors have the potential to overcome these limitations, however, due to the complex radar-surface interaction, the retrieving of crop biophysical variables using this technology remains an open challenge. Aiming to simultaneously benefit from the optical domain background and the all-weather imagery provided by radar systems, we propose a data fusion approach focused on the cross-correlation between radar and optical data streams. To do so, we analyzed several multiple-output Gaussian processes (MOGP) models and their ability to fuse efficiently Sentinel-1 (S1) Radar Vegetation Index (RVI) and Sentinel-2 (S2) vegetation water content (VWC) time series over a dry agri-environment in southern Argentina. MOGP models not only exploit the auto-correlations of S1 and S2 data streams independently but also the inter-channel cross-correlations. The S1 RVI and S2 VWC time series at the selected study sites being the inputs of the MOGP models proved to be closely correlated. Regarding the set of assessed models, the Convolutional Gaussian model (CONV) delivered noteworthy accurate data fusion results over winter wheat croplands belonging to the 2020 and 2021 campaigns (NRMSEwheat2020 = 16.1%; NRMSEwheat2021 = 10.1%). Posteriorly, we removed S2 observations from the S1 & S2 dataset corresponding to the complete phenological cycles of winter wheat from September to the end of December to simulate the presence of clouds in the scenes and applied the CONV model at the pixel level to reconstruct spatiotemporally-latent VWC maps. After applying the fusion strategy, the phenology of winter wheat was successfully recovered in the absence of optical data. Strong correlations were obtained between S2 VWC and S1 & S2 MOGP VWC reconstructed maps for the assessment dates (R2¯wheat−2020 = 0.95, R2¯wheat−2021 = 0.96). Altogether, the fusion of S1 SAR and S2 optical EO data streams with MOGP offers a powerful innovative approach for cropland trait monitoring over cloudy high-latitude regions.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Remote Sensing, MDPI AG, Vol. 15, No. 13 ( 2023-07-05), p. 3404-
    Abstract: Global mapping of essential vegetation traits (EVTs) through data acquired by Earth-observing satellites provides a spatially explicit way to analyze the current vegetation states and dynamics of our planet. Although significant efforts have been made, there is still a lack of global and consistently derived multi-temporal trait maps that are cloud-free. Here we present the processing chain for the spatiotemporally continuous production of four EVTs at a global scale: (1) fraction of absorbed photosynthetically active radiation (FAPAR), (2) leaf area index (LAI), (3) fractional vegetation cover (FVC), and (4) leaf chlorophyll content (LCC). The proposed workflow presents a scalable processing approach to the global cloud-free mapping of the EVTs. Hybrid retrieval models, named S3-TOA-GPR-1.0-WS, were implemented into Google Earth Engine (GEE) using Sentinel-3 Ocean and Land Color Instrument (OLCI) Level-1B for the mapping of the four EVTs along with associated uncertainty estimates. We used the Whittaker smoother (WS) for the temporal reconstruction of the four EVTs, which led to continuous data streams, here applied to the year 2019. Cloud-free maps were produced at 5 km spatial resolution at 10-day time intervals. The consistency and plausibility of the EVT estimates for the resulting annual profiles were evaluated by per-pixel intra-annually correlating against corresponding vegetation products of both MODIS and Copernicus Global Land Service (CGLS). The most consistent results were obtained for LAI, which showed intra-annual correlations with an average Pearson correlation coefficient (R) of 0.57 against the CGLS LAI product. Globally, the EVT products showed consistent results, specifically obtaining higher correlation than R 〉 0.5 with reference products between 30 and 60° latitude in the Northern Hemisphere. Additionally, intra-annual goodness-of-fit statistics were also calculated locally against reference products over four distinct vegetated land covers. As a general trend, vegetated land covers with pronounced phenological dynamics led to high correlations between the different products. However, sparsely vegetated fields as well as areas near the equator linked to smaller seasonality led to lower correlations. We conclude that the global gap-free mapping of the four EVTs was overall consistent. Thanks to GEE, the entire OLCI L1B catalogue can be processed efficiently into the EVT products on a global scale and made cloud-free with the WS temporal reconstruction method. Additionally, GEE facilitates the workflow to be operationally applicable and easily accessible to the broader community.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Remote Sensing, MDPI AG, Vol. 14, No. 1 ( 2021-12-29), p. 146-
    Abstract: Monitoring cropland phenology from optical satellite data remains a challenging task due to the influence of clouds and atmospheric artifacts. Therefore, measures need to be taken to overcome these challenges and gain better knowledge of crop dynamics. The arrival of cloud computing platforms such as Google Earth Engine (GEE) has enabled us to propose a Sentinel-2 (S2) phenology end-to-end processing chain. To achieve this, the following pipeline was implemented: (1) the building of hybrid Gaussian Process Regression (GPR) retrieval models of crop traits optimized with active learning, (2) implementation of these models on GEE (3) generation of spatiotemporally continuous maps and time series of these crop traits with the use of gap-filling through GPR fitting, and finally, (4) calculation of land surface phenology (LSP) metrics such as the start of season (SOS) or end of season (EOS). Overall, from good to high performance was achieved, in particular for the estimation of canopy-level traits such as leaf area index (LAI) and canopy chlorophyll content, with normalized root mean square errors (NRMSE) of 9% and 10%, respectively. By means of the GPR gap-filling time series of S2, entire tiles were reconstructed, and resulting maps were demonstrated over an agricultural area in Castile and Leon, Spain, where crop calendar data were available to assess the validity of LSP metrics derived from crop traits. In addition, phenology derived from the normalized difference vegetation index (NDVI) was used as reference. NDVI not only proved to be a robust indicator for the calculation of LSP metrics, but also served to demonstrate the good phenology quality of the quantitative trait products. Thanks to the GEE framework, the proposed workflow can be realized anywhere in the world and for any time window, thus representing a shift in the satellite data processing paradigm. We anticipate that the produced LSP metrics can provide meaningful insights into crop seasonal patterns in a changing environment that demands adaptive agricultural production.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Remote Sensing, MDPI AG, Vol. 14, No. 6 ( 2022-03-10), p. 1347-
    Abstract: Thanks to the emergence of cloud-computing platforms and the ability of machine learning methods to solve prediction problems efficiently, this work presents a workflow to automate spatiotemporal mapping of essential vegetation traits from Sentinel-3 (S3) imagery. The traits included leaf chlorophyll content (LCC), leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and fractional vegetation cover (FVC), being fundamental for assessing photosynthetic activity on Earth. The workflow involved Gaussian process regression (GPR) algorithms trained on top-of-atmosphere (TOA) radiance simulations generated by the coupled canopy radiative transfer model (RTM) SCOPE and the atmospheric RTM 6SV. The retrieval models, named to S3-TOA-GPR-1.0, were directly implemented in Google Earth Engine (GEE) to enable the quantification of the traits from TOA data as acquired from the S3 Ocean and Land Colour Instrument (OLCI) sensor. Following good to high theoretical validation results with normalized root mean square error (NRMSE) ranging from 5% (FAPAR) to 19% (LAI), a three fold evaluation approach over diverse sites and land cover types was pursued: (1) temporal comparison against LAI and FAPAR products obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) for the time window 2016–2020, (2) spatial difference mapping with Copernicus Global Land Service (CGLS) estimates, and (3) direct validation using interpolated in situ data from the VALERI network. For all three approaches, promising results were achieved. Selected sites demonstrated coherent seasonal patterns compared to LAI and FAPAR MODIS products, with differences between spatially averaged temporal patterns of only 6.59%. In respect of the spatial mapping comparison, estimates provided by the S3-TOA-GPR-1.0 models indicated highest consistency with FVC and FAPAR CGLS products. Moreover, the direct validation of our S3-TOA-GPR-1.0 models against VALERI estimates indicated good retrieval performance for LAI, FAPAR and FVC. We conclude that our retrieval workflow of spatiotemporal S3 TOA data processing into GEE opens the path towards global monitoring of fundamental vegetation traits, accessible to the whole research community.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Remote Sensing, MDPI AG, Vol. 13, No. 3 ( 2021-01-24), p. 403-
    Abstract: For the last decade, Gaussian process regression (GPR) proved to be a competitive machine learning regression algorithm for Earth observation applications, with attractive unique properties such as band relevance ranking and uncertainty estimates. More recently, GPR also proved to be a proficient time series processor to fill up gaps in optical imagery, typically due to cloud cover. This makes GPR perfectly suited for large-scale spatiotemporal processing of satellite imageries into cloud-free products of biophysical variables. With the advent of the Google Earth Engine (GEE) cloud platform, new opportunities emerged to process local-to-planetary scale satellite data using advanced machine learning techniques and convert them into gap-filled vegetation properties products. However, GPR is not yet part of the GEE ecosystem. To circumvent this limitation, this work proposes a general adaptation of GPR formulation to parallel processing framework and its integration into GEE. To demonstrate the functioning and utility of the developed workflow, a GPR model predicting green leaf area index (LAIG) from Sentinel-2 imagery was imported. Although by running this GPR model into GEE any corner of the world can be mapped into LAIG at a resolution of 20 m, here we show some demonstration cases over western Europe with zoom-ins over Spain. Thanks to the computational power of GEE, the mapping takes place on-the-fly. Additionally, a GPR-based gap filling strategy based on pre-optimized kernel hyperparameters is also put forward for the generation of multi-orbit cloud-free LAIG maps with an unprecedented level of detail, and the extraction of regularly-sampled LAIG time series at a pixel level. The ability to plugin a locally-trained GPR model into the GEE framework and its instant processing opens up a new paradigm of remote sensing image processing.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Remote Sensing of Environment, Elsevier BV, Vol. 273 ( 2022-05), p. 112958-
    Type of Medium: Online Resource
    ISSN: 0034-4257
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 1498713-2
    SSG: 11
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...