GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Contemporary Clinical Trials, Elsevier BV, Vol. 133 ( 2023-10), p. 107319-
    Type of Medium: Online Resource
    ISSN: 1551-7144
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2176813-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Polymers, MDPI AG, Vol. 15, No. 5 ( 2023-02-28), p. 1240-
    Abstract: The design and development of multifunctional fibers awakened great interest in biomaterials and food packaging materials. One way to achieve these materials is by incorporating functionalized nanoparticles into matrices obtained by spinning techniques. Here, a procedure for obtaining functionalized silver nanoparticles through a green protocol, using chitosan as a reducing agent, was implemented. These nanoparticles were incorporated into PLA solutions to study the production of multifunctional polymeric fibers by centrifugal force-spinning. Multifunctional PLA-based microfibers were obtained with nanoparticle concentrations varying from 0 to 3.5 wt%. The effect of the incorporation of nanoparticles and the method of preparation of the fibers on the morphology, thermomechanical properties, biodisintegration, and antimicrobial behavior, was investigated. The best balance in terms of thermomechanical behavior was obtained for the lowest amount of nanoparticles, that is 1 wt%. Furthermore, functionalized silver nanoparticles confer antibacterial activity to the PLA fibers, with a percentage of killing bacteria between 65 and 90%. All the samples turned out to be disintegrable under composting conditions. Additionally, the suitability of the centrifugal force-spinning technique for producing shape-memory fiber mats was tested. Results demonstrate that with 2 wt% of nanoparticles a good thermally activated shape-memory effect, with high values of fixity and recovery ratios, is obtained. The results obtained show interesting properties of the nanocomposites to be applied as biomaterials.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2023
    In:  Macromolecular Chemistry and Physics Vol. 224, No. 1 ( 2023-01)
    In: Macromolecular Chemistry and Physics, Wiley, Vol. 224, No. 1 ( 2023-01)
    Abstract: In this work, a comparative study between the morphology, the thermal and the mechanical properties of poly(ɛ‐caprolactone) (PCL)‐based electrospun fiber mats reinforced with both MgO and Mg(OH) 2 nanoparticles, is carried out. Both MgO and Mg(OH) 2 nanoparticles have been added in a range of concentrations such as 0.5, 1, 5, 10, 20 wt% with respect to the PCL matrix, with the aim of improving their mechanical properties in comparison with neat PCL electrospun fibers. From the morphological point of view, electrospun fibers are randomly collected and an increase in the average fiber diameter with the addition of nanoparticles is observed. The addition of both types of nanoparticles lower the onset degradation temperature as well as the maximum degradation temperature of neat ePCL of about 50 °C with the higher content of nanoparticles. Furthermore, PCL electrospun nanofiber mats show a degree of crystallinity of 53%, which is quite high. However, the addition of 20 wt% of both MgO and Mg(OH) 2 lowers the crystallinity of the reinforced electrospun fibers to 50% and 43% for PCL + MgO 20 wt% and Mg(OH) 2 20 wt%, respectively.
    Type of Medium: Online Resource
    ISSN: 1022-1352 , 1521-3935
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 1475026-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Molecules, MDPI AG, Vol. 26, No. 16 ( 2021-08-14), p. 4925-
    Abstract: In this work, different poly (lactic acid) (PLA)-based nanocomposite electrospun fibers, reinforced with both organic and inorganic nanoparticles, were obtained. As organic fibers, cellulose nanocrystals, CNC, both neat and functionalized by “grafting from” reaction, chitosan and graphene were used; meanwhile, hydroxyapatite and silver nanoparticles were used as inorganic fibers. All of the nanoparticles were added at 1 wt% with respect to the PLA matrix in order to be able to compare their effect. The main aim of this work was to study the morphological, thermal and mechanical properties of the different systems, looking for differences between the effects of the addition of organic or inorganic nanoparticles. No differences were found in either the glass transition temperature or the melting temperature between the different electrospun systems. However, systems reinforced with both neat and functionalized CNC exhibited an enhanced degree of crystallinity of the electrospun fibers, by up to 12.3%. From a mechanical point of view, both organic and inorganic nanoparticles exhibited a decreased elastic modulus and tensile strength in comparison to neat electrospun PLA fibers, improving their elongation at break. Furthermore, all of the organic and inorganic reinforced systems disintegrated under composting conditions after 35 days.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Molecules Vol. 28, No. 3 ( 2023-01-19), p. 1001-
    In: Molecules, MDPI AG, Vol. 28, No. 3 ( 2023-01-19), p. 1001-
    Abstract: In this work, the in vitro degradation behavior of nanofibers was investigated in phosphate buffer solution (PBS) and simulated body fluid (SBF) to study their degradation behavior, as well as their bioactivity. The degradation was studied at different immersion times in order to evaluate how the presence of Mg-based nanoparticles can affect the degradation in terms of morphology, crystallinity, degradation rate and pH changes, and finally to evaluate the bioactivity of PCL-based electrospun nanofibers. We found that the degradation of the materials takes more than 3 months; however, the presence of nanoparticles seems to have an accelerating effect on the degradation of the electrospun nanofibers based on PCL. In fact, a reduction in diameter of almost 50% was observed with the highest content of both types of nanoparticles and an increase in crystallinity after 296 days of immersion in PBS. Moreover, the carbonyl index was calculated from an FTIR analysis, and a reduction of 20–30% was observed due to the degradation effect. Additionally, the bioactivity of PCL-based electrospun nanofibers was studied and the formation of crystals on the nanofibers surface was detected, except for neat electrospun PCL related to the formation of NaCl and apatites, depending on the amount and type of nanoparticles. The presence of apatites was confirmed by an XRD analysis and FT-IR analysis observing the characteristic peaks; furthermore, the EDX analysis demonstrated the formation of apatites than can be reconducted to the presence of HA when 20 wt% of nanoparticles is added to the PCL electrospun fibers.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Disease Models & Mechanisms, The Company of Biologists
    Abstract: The Schimke immuno-osseous dysplasia is an autosomal recessive genetic osteochondrodysplasia characterized by dysmorphism, spondyloepiphyseal dysplasia, nephrotic syndrome and frequently T cell immunodeficiency. Several hypotheses have been proposed to explain pathophysiology of the disease, however, the mechanism by which SMARCAL1 mutations cause the syndrome is elusive. Here, we generated a conditional SMARCAL1 knockdown model in iPSCs to mimic conditions associated with the severe form the disease. Using multiple cellular endpoints, we characterized this model for the presence of phenotypes linked to the replication caretaker role of SMARCAL1. Our data show that conditional knockdown of SMARCAL1 in human iPSCs induces replication-dependent and chronic accumulation of DNA damage triggering the DNA damage response. Furthermore, they indicate that accumulation of DNA damage and activation of the DNA damage response correlates with increased levels of R-loops and replication-transcription interference. Finally, we provide evidence that SMARCAL1-deficient iPSCs maintain DNA damage response active beyond differentiation, possibly contributing to the observed altered expression of a subset of germ layer-specific master genes. Confirming the relevance of SMARCAL1 loss for the observed phenotypes, they are prevented or rescued after re-expression of wild-type SMARCAL1 in our iPSC model. In conclusion, our conditional SMARCAL1 knockdown model in iPSCs may represent a powerful model where studying pathogenetic mechanisms of severe Schimke immuno-osseous dysplasia.
    Type of Medium: Online Resource
    ISSN: 1754-8411 , 1754-8403
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2019
    detail.hit.zdb_id: 2451104-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Polymers, MDPI AG, Vol. 12, No. 6 ( 2020-06-10), p. 1325-
    Abstract: In this work, different nanocomposite electrospun fiber mats were obtained based on poly(e-caprolactone) (PCL) and reinforced with both organic and inorganic nanoparticles. In particular, on one side, cellulose nanocrystals (CNC) were synthesized and functionalized by “grafting from” reaction, using their superficial OH– group to graft PCL chains. On the other side, commercial chitosan, graphene as organic, while silver, hydroxyapatite, and fumed silica nanoparticles were used as inorganic reinforcements. All the nanoparticles were added at 1 wt% with respect to the PCL polymeric matrix in order to compare the different behavior of the woven no-woven nanocomposite electrospun fibers with a fixed amount of both organic and inorganic nanoparticles. From the thermal point of view, no difference was found between the effect of the addition of organic or inorganic nanoparticles, with no significant variation in the Tg (glass transition temperature), Tm (melting temperature), and the degree of crystallinity, leading in all cases to high crystallinity electrospun mats. From the mechanical point of view, the highest values of Young modulus were obtained when graphene, CNC, and silver nanoparticles were added to the PCL electrospun fibers. Moreover, all the nanoparticles used, both organic and inorganic, increased the flexibility of the electrospun mats, increasing their elongation at break.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Polymers Vol. 14, No. 5 ( 2022-02-28), p. 995-
    In: Polymers, MDPI AG, Vol. 14, No. 5 ( 2022-02-28), p. 995-
    Abstract: This review aims to point out the importance of the synergic effects of two relevant and appealing polymeric issues: electrospun fibers and shape-memory properties. The attention is focused specifically on the design and processing of electrospun polymeric fibers with shape-memory capabilities and their potential application fields. It is shown that this field needs to be explored more from both scientific and industrial points of view; however, very promising results have been obtained up to now in the biomedical field and also as sensors and actuators and in electronics.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Nanomaterials, MDPI AG, Vol. 13, No. 15 ( 2023-08-02), p. 2236-
    Abstract: In this work, electrospun nanofibers based on polylactic acid, PLA, reinforced with ZnO nanoparticles have been studied, considering the growing importance of electrospun mats based on biopolymers for their applications in different fields. Specifically, electrospun nanofibers based on PLA have been prepared by adding ZnO nanoparticles at different concentrations, such as 0.5, 1, 3, 5, 10 and 20 wt%, with respect to the polymer matrix. The materials have been characterized in terms of their morphological, mechanical, and thermal properties, finding 3 wt% as the best concentration to produce PLA nanofibers reinforced with ZnO nanoparticles. In addition, hydrolytic degradation in phosphate buffer solution (PBS) was carried out to study the effect of ZnO nanoparticles on the degradation behavior of PLA-based electrospun nanofiber mats, obtaining an acceleration in the degradation of the PLA electrospun mat.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Polymers, MDPI AG, Vol. 15, No. 8 ( 2023-04-16), p. 1907-
    Abstract: Additive manufacturing, in particular the fused deposition method, is a quite new interesting technique used to obtain specific 3D objects by depositing layer after layer of material. Generally, commercial filaments can be used in 3D printing. However, the obtention of functional filaments is not so easy to reach. In this work, we obtain filaments based on poly(lactic acid), PLA, reinforced with different amounts of magnesium, Mg, microparticles, using a two-step extrusion process, in order to study how processing can affect the thermal degradation of the filaments; we additionally study their in vitro degradation, with a complete release of Mg microparticles after 84 days in phosphate buffer saline media. Therefore, considering that we want to obtain a functional filament for further 3D printing, the simpler the processing, the better the result in terms of a scalable approach. In our case, we obtain micro-composites via the double-extrusion process without degrading the materials, with good dispersion of the microparticles into the PLA matrix without any chemical or physical modification of the microparticles.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...