GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Medicine, Springer Science and Business Media LLC, Vol. 28, No. 8 ( 2022-08), p. 1581-1589
    Type of Medium: Online Resource
    ISSN: 1078-8956 , 1546-170X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1484517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: JCO Precision Oncology, American Society of Clinical Oncology (ASCO), , No. 6 ( 2022-11)
    Abstract: Multiple FGFR inhibitors are currently in clinical trials enrolling adults with different solid tumors, while very few enroll pediatric patients. We determined the types and frequency of FGFR alterations ( FGFR1-4) in pediatric cancers to inform future clinical trial design. METHODS Tumors with FGFR alterations were identified from two large cohorts of pediatric solid tumors subjected to targeted DNA sequencing: The Dana-Farber/Boston Children's Profile Study (n = 888) and the multi-institution GAIN/iCAT2 (Genomic Assessment Improves Novel Therapy) Study (n = 571). Data from the combined patient population of 1,395 cases (64 patients were enrolled in both studies) were reviewed and cases in which an FGFR alteration was identified by OncoPanel sequencing were further assessed. RESULTS We identified 41 patients with tumors harboring an oncogenic FGFR alteration. Median age at diagnosis was 8 years (range, 6 months-26 years). Diagnoses included 11 rhabdomyosarcomas, nine low-grade gliomas, and 17 other tumor types. Alterations included gain-of-function sequence variants (n = 19), amplifications (n = 10), oncogenic fusions ( FGFR3:: TACC3 [n = 3], FGFR1:: TACC1 [n = 1] , FGFR1:: EBF2 [n = 1], FGFR1:: CLIP2 [n = 1] , and FGFR2:: CTNNA3 [n = 1]), pathogenic-leaning variants of uncertain significance (n = 4), and amplification in combination with a pathogenic-leaning variant of uncertain significance (n = 1). Two novel FGFR1 fusions in two different patients were identified in this cohort, one of whom showed a response to an FGFR inhibitor. CONCLUSION In summary, activating FGFR alterations were found in approximately 3% (41/1,395) of pediatric solid tumors, identifying a population of children with cancer who may be eligible and good candidates for trials evaluating FGFR-targeted therapy. Importantly, the genomic and clinical data from this study can help inform drug development in accordance with the Research to Accelerate Cures and Equity for Children Act.
    Type of Medium: Online Resource
    ISSN: 2473-4284
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2022
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: JCO Precision Oncology, American Society of Clinical Oncology (ASCO), , No. 7 ( 2023-03)
    Abstract: Osteosarcoma risk stratification, on the basis of the presence of metastatic disease at diagnosis and histologic response to chemotherapy, has remained unchanged for four decades, does not include genomic features, and has not facilitated treatment advances. We report on the genomic features of advanced osteosarcoma and provide evidence that genomic alterations can be used for risk stratification. MATERIALS AND METHODS In a primary analytic patient cohort, 113 tumor and 69 normal samples from 92 patients with high-grade osteosarcoma were sequenced with OncoPanel, a targeted next-generation sequencing assay. In this primary cohort, we assessed the genomic landscape of advanced disease and evaluated the correlation between recurrent genomic events and outcome. We assessed whether prognostic associations identified in the primary cohort were maintained in a validation cohort of 86 patients with localized osteosarcoma tested with MSK-IMPACT. RESULTS In the primary cohort, 3-year overall survival (OS) was 65%. Metastatic disease, present in 33% of patients at diagnosis, was associated with poor OS ( P = .04). The most frequently altered genes in the primary cohort were TP 53, RB1, MYC, CCNE1, CCND3, CDKN2A/B, and ATRX. Mutational signature 3 was present in 28% of samples. MYC amplification was associated with a worse 3-year OS in both the primary cohort ( P = .015) and the validation cohort ( P = .012). CONCLUSION The most frequently occurring genomic events in advanced osteosarcoma were similar to those described in prior reports. MYC amplification, detected with clinical targeted next-generation sequencing panel tests, is associated with poorer outcomes in two independent cohorts.
    Type of Medium: Online Resource
    ISSN: 2473-4284
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2023
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2019
    In:  Cancer Research Vol. 79, No. 13_Supplement ( 2019-07-01), p. 4268-4268
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 4268-4268
    Abstract: Cancer cells experience acute stress conditions such as low oxygen and energy, and exposure to toxic agents. To survive proliferate without accumulating toxic misfolded proteins, cancer cells constantly modulate protein homeostasis. Thus, it is not surprising that molecular chaperones, like Hsp70, as well as protein degradation pathways are upregulated in cancer cells compared to their normal counterparts. These data suggest that chaperones are potential targets for cancer therapy. We previously demonstrated the dependence of patient-driven rhabdomyosarcoma cell survival on cytoplasmic Hsp70 activity, thanks to the use of a specific Hsp70 inhibitor, MAL3-101. In particular, we discovered that MAL3-101-mediated Hsp70 inhibition activates the PERK arm of the unfolded protein response (UPR) that results in CHOP-dependent cell death (Sabinis et al., 2016). Moreover, by taking advantage of a MAL3-101-resistant cell line (RMS13-R), we recently determined which compensatory mechanism alters MAL3-101-driven cell death. We found that both endoplasmic reticulum-associated degradation (ERAD) and autophagy are upregulated in RMS13-R cells, underlying increased demand on two protein degradation pathways upon inhibition of Hsp70. However, only autophagy inhibition—but not inhibition of ERAD—re-sensitized RMS13-R cells to Hsp70 inhibition, suggesting that autophagy was the key compensatory mechanism for Hsp70 inhibition. Autophagy was further induced by MAL3-101 treatment in RMS13-R cells, as evidenced by an increase in the messages and proteins corresponding to key autophagy components as well as to the accumulation of autophagic-like structures detected by electron microscopy (Sannino et al., 2018). These data highlight a pro-survival role for autophagy induction upon exposure to an Hsp70 inhibitor in cancer, and provide a link between Hsp70, proteasomal degradation, UPR, and autophagy in rhabdomyosarcoma. We next asked if other cancer types might be sensitive to Hsp70 inhibition, and we investigated the potential benefit of combined treatment with autophagy and/or proteasome inhibitors together with MAL3-101. Specifically, we are investigating the effects of Hsp70 inhibition in breast cancer cells, a cancer type in which higher levels of Hsp70 correlate to increased metastasis and poor prognosis in patients. Our preliminary data suggest that HER2-expressing cells are less sensitive to MAL3-101-mediated Hsp70 inhibition and combinatory treatments including, MAL3-101 and autophagy inhibitors promoted HER2-breast cancer cell death. Further investigations will reveal the potential carcinogenic role of Hsp70 inhibitors in breast cancer treatment and highlight which pathways reduce proteotoxicity in different breast cancer subtypes. Citation Format: Sara Sannino, Christopher J. Guerriero, Amit J. Sabnis, Jeffrey J. Bridsky. Protein folding pathway modulation upon Hsp70 inhibition in cancer cells [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 4268.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cell Reports, Elsevier BV, Vol. 28, No. 9 ( 2019-08), p. 2317-2330.e8
    Type of Medium: Online Resource
    ISSN: 2211-1247
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 2649101-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 39, No. 15_suppl ( 2021-05-20), p. 10005-10005
    Abstract: 10005 Background: Next generation sequencing (NGS) assays are now a standard part of clinical care for many adult solid cancers. The significance of molecular tumor profiling for the care of children with cancer is not well understood.We aimed to determine the clinical impact of identifying genomic alterations by NGS for young patients with relapsed, refractory, or high-risk extracranial solid tumors. Methods: We report on the first 389 participants in a prospective cohort study enrolling patients at 12 institutions with extracranial solid tumors diagnosed at age 30 years or less. Targeted DNA NGS was performed on one or more tumor samples from each patient. Selected patients also had tumors subjected to RNA sequencing. Test results were returned to the treating oncologist and follow-up treatment and response data were collected.Identified genomic alterations were classified according to evidence of impact on diagnosis, prognosis or response to targeted therapy matched to an identified alteration (matched targeted therapy, MTT) using established guidelines. Response to MTT was determined and reported as a response if either there was radiographic response according to RECIST or the duration of therapy was 〉 4 months. Results: Molecular tumor profiling (MTP) was successful in 345 (89%) patients (mean age 11 years at diagnosis; 65% with sarcoma). Two hundred and ninety-nine patients with MTP results (87%) had one or more alterations of clinical significance. Genomic alterations with diagnostic, prognostic or therapeutic significance were present in 208 (60%), 51 (15%) and 240 (70%) patients, respectively. Of the 240 patients with tumors harboring genomic alterations designated as having therapeutic impact, 23 (11%) had Tier 1 molecular findings. 205 patients were eligible to receive MTT based on having a molecular alteration with therapeutic significance and sufficient follow-up; 31 of these patients (15%) received MTT. Seven patients (23%) receiving MTT responded, 6 of these were kinase fusions. All of the responders received targeted therapy matched to a fusion and 78% of diagnostically significant alterations were fusions. Conclusions: Molecular tumor profiling has a significant impact on diagnosis and treatment recommendations for young patients with extracranial solid tumors. These results emphasize the importance of fusion detection for patients with sarcomas and rare tumors. Clinical trial information: NCT02520713.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2021
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Cell Science, The Company of Biologists
    Abstract: Cancer cells thrive when challenged with proteotoxic stress by inducing components of the protein folding, proteasome, autophagy, and unfolded protein response (UPR) pathways. Consequently, specific molecular chaperones have been validated as targets for anti-cancer therapies. For example, inhibition of Hsp70 in rhabdomyosarcoma triggers UPR induction and apoptosis. To define how these cancer cells respond to compromised proteostasis, we compared rhabdomyosarcoma cells that were sensitive (RMS13) or resistant (RMS13-R) to an Hsp70 inhibitor, MAL3-101. We discovered that endoplasmic reticulum associated degradation (ERAD) and autophagy were activated in RMS13-R cells, suggesting that resistant cells overcome Hsp70 ablation by increasing misfolded protein degradation. Indeed, RMS13-R cells degraded ERAD substrates more rapidly than RMS cells and induced the autophagy pathway. Surprisingly, inhibition of the proteasome or ERAD had no effect on RMS13-R cell survival, but silencing of select autophagy components or treatment with autophagy inhibitors restored MAL3-101 sensitivity and led to apoptosis. These data indicate a route through which cancer cells overcome a chaperone-based therapy, define how cells can adapt to Hsp70 inhibition, and demonstrate the value of combined chaperone and autophagy-based therapies.
    Type of Medium: Online Resource
    ISSN: 1477-9137 , 0021-9533
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2018
    detail.hit.zdb_id: 219171-4
    detail.hit.zdb_id: 1483099-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: JCO Precision Oncology, American Society of Clinical Oncology (ASCO), , No. 5 ( 2021-11), p. 1840-1852
    Abstract: Molecular tumor profiling is becoming a routine part of clinical cancer care, typically involving tumor-only panel testing without matched germline. We hypothesized that integrated germline sequencing could improve clinical interpretation and enhance the identification of germline variants with significant hereditary risks. MATERIALS AND METHODS Tumors from pediatric patients with high-risk, extracranial solid malignancies were sequenced with a targeted panel of cancer-associated genes. Later, germline DNA was analyzed for a subset of these genes. We performed a post hoc analysis to identify how an integrated analysis of tumor and germline data would improve clinical interpretation. RESULTS One hundred sixty participants with both tumor-only and germline sequencing reports were eligible for this analysis. Germline sequencing identified 38 pathogenic or likely pathogenic variants among 35 (22%) patients. Twenty-five (66%) of these were included in the tumor sequencing report. The remaining germline pathogenic or likely pathogenic variants were single-nucleotide variants filtered out of tumor-only analysis because of population frequency or copy-number variation masked by additional copy-number changes in the tumor. In tumor-only sequencing, 308 of 434 (71%) single-nucleotide variants reported were present in the germline, including 31% with suggested clinical utility. Finally, we provide further evidence that the variant allele fraction from tumor-only sequencing is insufficient to differentiate somatic from germline events. CONCLUSION A paired approach to analyzing tumor and germline sequencing data would be expected to improve the efficiency and accuracy of distinguishing somatic mutations and germline variants, thereby facilitating the process of variant curation and therapeutic interpretation for somatic reports, as well as the identification of variants associated with germline cancer predisposition.
    Type of Medium: Online Resource
    ISSN: 2473-4284
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2018
    In:  Cancer Research Vol. 78, No. 13_Supplement ( 2018-07-01), p. 2325-2325
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 2325-2325
    Abstract: Cancer cells experience acute stress conditions due to their increased proliferation rate and synthesis of misfolded proteins. However, by modulating the mechanisms that control protein-folding, cancer cells avoid cell death. Thus, it is perhaps not surprising that molecular chaperones, like Hsp70, are upregulated in cancer cells compared to their normal counterparts. These data suggest that these chaperones are potential targets for cancer therapy. Previous work in our lab demonstrated the dependence of patient-driven rhabdomyosarcoma cell survival on cytoplasmic Hsp70 activity, thanks to the use of a specific Hsp70 inhibitor, MAL3-101. In particular, we discovered that treatment of on RMS13 cell line with an Hsp70 inhibitor, known as MAL3-101, activates the PERK driven unfolded protein response that results in CHOP-dependent cell death (Sabinis et al., 2016). Nevertheless, the mechanism underlying how Hsp70 inhibition triggered apoptosis was poorly understood. By taking advantage of a MAL3-101-resistant cell line (RMS13-R), we have now determined which compensatory mechanism alters MAL3-101-driven cell death. We found that both endoplasmic reticulum-associated degradation (ERAD) and autophagy are upregulated in RMS13-R cells, underlying the increased demand on two protein degradation pathways upon inhibition of Hsp70. Specifically, autophagy related genes were upregulated, and increased conversion of LC3BI to LC3BII and accumulation of LC3BII was detected in RMS13-R cells. Further experiments demonstrated that autophagy was further induced by MAL3-101 treatment in RMS13-R cells, as evidenced by an increase in the messages and proteins corresponding to key autophagy components. Finally, we discovered that only autophagy inhibition—but not inhibition of ERAD—re-sensitized RMS13-R cells to Hsp70 inhibition, which was apparent from an induction of apoptotic markers and cell death. These data highlight a pro-survival role for autophagy induction upon exposure to an Hsp70 inhibitor in cancer, and provide a link between Hsp70, proteasomal degradation, the unfolded protein response, and autophagy in rhabdomyosarcoma. Citation Format: Sara Sannino, Christopher J. Guerriero, Amit J. Sabnis, Trever G. Bivona, Jeffrey L. Brodsky. Protein homeostasis adaptation to Hsp70 inhibition in cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 2325.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 3104-3104
    Abstract: The GAIN iCat2 Project is a collaboration between Dana-Farber/Boston Children's Cancer and Blood Disorder Center and eleven pediatric oncology centers across the United States to sequence relapsed, metastatic, difficult-to-diagnose, and high-risk extracranial solid tumors from 825 patients. The goals are to gain a better understanding of the genomic events in pediatric cancers and determine the clinical impact of matched targeted therapy. Tumor samples are sequenced on one of four gene panels performed in CLIA certified, CAP accredited laboratories, most often utilizing OncoPanel at the Center for Advanced Molecular Diagnostics, Brigham Women’s Hospital. This panel assesses SNVs and CNVs in 447 cancer-associated genes and interrogates intronic regions of 60 genes frequently involved in oncogenic translocation. For undifferentiated sarcomas and tumors in which oncogenic drivers are not identified by the gene panel, whole exome sequencing or RNA sequencing for fusion detection may be done. Interpretation of genomic results, including potential implications for diagnosis and hereditary risks, as well as assessment of possible matched targeted therapies and suitable trials are summarized in a report to the primary oncology provider. An interim analysis of tumors from the first 275 patients enrolled who have OncoPanel results was performed to assess genomic alterations most prevalent in this group of pediatric cancers. 50% (137/275) have structural alterations in their tumors with over half of these (74/137) harboring an oncogenic fusion that is the main, or only identified, driver of the cancer. These include fusions pathognomonic for diseases such as Ewing sarcoma, alveolar rhabdomyosarcoma, synovial sarcoma, desmoplastic small round cell tumors, mesenchymal chondrosarcoma, low grade fibromyxoid sarcoma, and NUT midline carcinoma. Other cases showed recurrent disruption of key tumor suppressors, such as TP53 intron 1 translocations in osteosarcoma. Lastly, more generalized, key, cancer-driving fusions were seen with rearrangements involving BRAF, NOTCH, and NTRK. In addition to aiding in diagnosis, identification of fusions has led to targeted therapy recommendations for many patients. SNVs and CNVs also helped clarify diagnoses, especially in the case of DICER1 and SMARCB1 alterations, and identified potential targeted therapies to consider for relapsed patients. Although patient recruitment is ongoing, this study shows promise for advancing our understanding and treatment of pediatric cancers and highlights the critical importance of incorporating techniques for fusion detection in tumor profiling. Citation Format: Laura B. Corson, Alma Imamovic-Tuco, Gianna R. Strand, Deirdre Reidy, Duong Doan, Mark A. Applebaum, Rochelle Bagatell, Brian D. Crompton, Steven G. DuBois, Julia L. Glade Bender, AeRang Kim, Theodore W. Laetsch, Lobin A. Lee, Neal I. Lindeman, Laura E. MacConaill, Margaret E. Macy, Luke Maese, Seth Pinches, Navin Pinto, Amit J. Sabnis, Eliezer M. Van Allen, Susan I. Vear, Daniel A. Weiser, Catherine M. Clinton, Katherine A. Janeway, Alanna J. Church. A high prevalence of chromosomal translocations as drivers in high-risk pediatric solid cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 3104.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...