GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Neuroscience, Frontiers Media SA, Vol. 15 ( 2021-6-15)
    Abstract: Innate receptors, including Toll like receptors (TLRs), are implicated in pathogenesis of CNS inflammatory diseases such as multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). TLR response to pathogens or endogenous signals includes production of immunoregulatory mediators. One of these, interferon (IFN)β, a Type I IFN, plays a protective role in MS and EAE. We have previously shown that intrathecal administration of selected TLR ligands induced IFNβ and infiltration of blood-derived myeloid cells into the central nervous system (CNS), and suppressed EAE in mice. We have now extended these studies to evaluate a potential therapeutic role for CNS-endogenous TLR7 and TLR9. Intrathecal application of Imiquimod (TLR7 ligand) or CpG oligonucleotide (TLR9 ligand) into CNS of otherwise unmanipulated mice induced IFNβ expression, with greater magnitude in response to CpG. CD45+ cells in the meninges were identified as source of IFNβ. Intrathecal CpG induced infiltration of monocytes, neutrophils, CD4+ T cells and NK cells whereas Imiquimod did not recruit blood-derived CD45+ cells. CpG, but not Imiquimod, had a beneficial effect on EAE, when given at time of disease onset. This therapeutic effect of CpG on EAE was not seen in mice lacking the Type I IFN receptor. In mice with EAE treated with CpG, the proportion of monocytes was significantly increased in the CNS. Infiltrating cells were predominantly localized to spinal cord meninges and demyelination was significantly reduced compared to non-treated mice with EAE. Our findings show that TLR7 and TLR9 signaling induce distinct inflammatory responses in the CNS with different outcome in EAE and point to recruitment of blood-derived cells and IFNβ induction as possible mechanistic links between TLR9 stimulation and amelioration of EAE. The protective role of TLR9 signaling in the CNS may have application in treatment of diseases such as MS.
    Type of Medium: Online Resource
    ISSN: 1662-453X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2411902-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Diabetes Research, Hindawi Limited, Vol. 2022 ( 2022-2-17), p. 1-6
    Abstract: Background. Charcot osteoarthropathy of the foot (COA) can currently only be treated using prolonged periods of immobilization of the affected extremity. Therefore, the hypothesis is that COA leads to altered body composition and increased sarcopenia. Objective. To investigate the changes over several years in sarcopenia, body composition, and fat distribution in diabetes patients with previous COA compared to diabetes patients without previous COA. Methods. Prospective observational clinical study. Twenty-one subjects were included and had two DXA scans done with mean 8.6-year intervals to compare changes in lean mass and fat distribution. The lean mass of limbs was used as an estimate of appendicular lean mass (aLM). Fat mass and aLM were then used to detect sarcopenic individuals using different methods. Results and Conclusions. As compared to baseline, both groups had significant loss of lean mass, and diabetics without COA had significant gain of total fat percentage. No statistically different prevalence of sarcopenia between the groups could be established. Likewise, no difference was found in total lean and fat mass changes. None of the groups had statistically significant changes of android fat distribution. As compared with published data on sarcopenia, people with diabetes might be more prone to sarcopenia than healthy individuals.
    Type of Medium: Online Resource
    ISSN: 2314-6753 , 2314-6745
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2711897-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...