GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Atmosphere, MDPI AG, Vol. 12, No. 12 ( 2021-11-27), p. 1583-
    Abstract: The Poland-AOD aerosol research network was established in 2011 to improve aerosol–climate interaction knowledge and provide a real-time and historical, comprehensive, and quantitative database for the aerosol optical properties distribution over Poland. The network consists of research institutions and private owners operating 10 measurement stations and an organization responsible for aerosol model transport simulations. Poland-AOD collaboration provides observations of spectral aerosol optical depth (AOD), Ångstrom Exponent (AE), incoming shortwave (SW) and longwave (LW) radiation fluxes, vertical profiles of aerosol optical properties and surface aerosol scattering and absorption coefficient, as well as microphysical particle properties. Based on the radiative transfer model (RTM), the aerosol radiative forcing (ARF) and the heating rate are simulated. In addition, results from GEM-AQ and WRF-Chem models (e.g., aerosol mass mixing ratio and optical properties for several particle chemical components), and HYSPLIT back-trajectories are used to interpret the results of observation and to describe the 3D aerosol optical properties distribution. Results of Poland-AOD research indicate progressive improvement of air quality and at mospheric turbidity during the last decade. The AOD was reduced by about 0.02/10 yr (at 550 nm), which corresponds to positive trends in ARF. The estimated clear-sky ARF trend is 0.34 W/m2/10 yr and 0.68 W/m2/10 yr, respectively, at TOA and at Earth’s surface. Therefore, reduction in aerosol load observed in Poland can significantly contribute to climate warming.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cells, MDPI AG, Vol. 10, No. 7 ( 2021-07-16), p. 1804-
    Abstract: Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease, causing motor neuron and skeletal muscle loss and death. One of the promising therapeutic approaches is stem cell graft application into the brain; however, an immune reaction against it creates serious limitations. This study aimed to research the efficiency of glial restricted progenitors (GRPs) grafted into murine CNS (central nervous system) in healthy models and the SOD1G93A ALS disease model. The cellular grafts were administered in semiallogenic and allogeneic settings. To investigate the models of immune reaction against grafted GRPs, we applied three immunosuppressive/immunomodulatory regimens: preimplantation factor (PiF); Tacrolimus; and CTLA-4, MR1 co-stimulatory blockade. We tracked the cells with bioluminescence imaging (BLI) in vivo to study their survival. The immune response character was evaluated with brain tissue assays and multiplex ELISA in serum and cerebrospinal fluid (CSF). The application of immunosuppressive drugs is disputable when considering cellular transplants into the immune-privileged site/brain. However, our data revealed that semiallogenic GRP graft might survive inside murine CNS without the necessity to apply any immunomodulation or immunosuppression, whereas, in the situation of allogeneic mouse setting, the combination of CTLA-4, MR1 blockade can be considered as the best immunosuppressive option.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...