GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2016
    In:  Boundary-Layer Meteorology Vol. 161, No. 1 ( 2016-10), p. 223-223
    In: Boundary-Layer Meteorology, Springer Science and Business Media LLC, Vol. 161, No. 1 ( 2016-10), p. 223-223
    Type of Medium: Online Resource
    ISSN: 0006-8314 , 1573-1472
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 242879-9
    detail.hit.zdb_id: 1477639-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2012
    In:  Aerobiologia Vol. 28, No. 4 ( 2012-12), p. 499-513
    In: Aerobiologia, Springer Science and Business Media LLC, Vol. 28, No. 4 ( 2012-12), p. 499-513
    Type of Medium: Online Resource
    ISSN: 0393-5965 , 1573-3025
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 1499126-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2006
    In:  Journal of Applied Meteorology and Climatology Vol. 45, No. 1 ( 2006-01-01), p. 63-86
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 45, No. 1 ( 2006-01-01), p. 63-86
    Abstract: This paper investigates the steps necessary to achieve accurate simulations of flow over steep, mountainous terrain. Large-eddy simulations of flow in the Riviera Valley in the southern Swiss Alps are performed at horizontal resolutions as fine as 150 m using the Advanced Regional Prediction System. Comparisons are made with surface station and radiosonde measurements from the Mesoscale Alpine Programme (MAP)-Riviera project field campaign of 1999. Excellent agreement between simulations and observations is obtained, but only when high-resolution surface datasets are used and the nested grid configurations are carefully chosen. Simply increasing spatial resolution without incorporating improved surface data gives unsatisfactory results. The sensitivity of the results to initial soil moisture, land use data, grid resolution, topographic shading, and turbulence models is explored. Even with strong thermal forcing, the onset and magnitude of the upvalley winds are highly sensitive to surface processes in areas that are well outside the high-resolution domain. In particular, the soil moisture initialization on the 1-km grid is found to be crucial to the success of the finer-resolution predictions. High-resolution soil moisture and land use data on the 350-m-resolution grid also improve results. The use of topographic shading improves radiation curves during sunrise and sunset, but the effects on the overall flow are limited because of the strong lateral boundary forcing from the 1-km grid where terrain slopes are not well resolved. The influence of the turbulence closure is also limited because of strong lateral forcing and hence limited residence time of air inside the valley and because of the stable stratification, which limits turbulent stress to the lowest few hundred meters near the surface.
    Type of Medium: Online Resource
    ISSN: 1558-8432 , 1558-8424
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2006
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2017
    In:  Journal of Applied Meteorology and Climatology Vol. 56, No. 10 ( 2017-10), p. 2711-2727
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 56, No. 10 ( 2017-10), p. 2711-2727
    Abstract: The convective export of heat from different types of idealized valleys for fair-weather daytime conditions is studied with the Weather Research and Forecasting (WRF) Model. The goal is to test the hypothesis that the total export of heat over the course of the day depends on a so-called breakup parameter B . The breakup parameter is the ratio between the energy required to neutralize the initially stably stratified valley atmosphere and the total energy provided by the surface sensible heat flux. To achieve this goal, simulations with different surface heating, initial stability, and terrain geometry are performed. The fraction of the sensible heat provided at the surface that is exported at crest height over the course of the day depends exponentially on B . The effects of variations of the valley width, crest height, forcing amplitude, and initial stratification on the total export of heat can be described by this function. The complete neutralization of the stratification in the valley is never reached if B exceeds a critical value of about 0.65 for an initially constant stratification. For a valley geometry with linear slopes and sharp crests, up to 60% of the provided heat is exported for the strongest forcing and the weakest stability (i.e., B ≈ 0.1), whereas less than 5% is exported for B 〉 0.65. The minimum heat export for larger B is higher for rounded crests (10%) and for a deep residual layer that extends to above crest height (17%).
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2012
    In:  Journal of Applied Meteorology and Climatology Vol. 51, No. 9 ( 2012-09), p. 1633-1638
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 51, No. 9 ( 2012-09), p. 1633-1638
    Abstract: Monthly weather forecasts (MOFCs) were shown to have skill in extratropical continental regions for lead times up to 3 weeks, in particular for temperature and if weekly averaged. This skill could be exploited in practical applications for implementations exhibiting some degree of memory or inertia toward meteorological drivers, potentially even for longer lead times. Many agricultural applications fall into these categories because of the temperature-dependent development of biological organisms, allowing simulations that are based on temperature sums. Most such agricultural models require local weather information at daily or even hourly temporal resolution, however, preventing direct use of the spatially and temporally aggregated information of MOFCs, which may furthermore be subject to significant biases. By the example of forecasting the timing of life-phase occurrences of the codling moth ( Cydia pomonella ), which is a major insect pest in apple orchards worldwide, the authors investigate the application of downscaled weekly temperature anomalies of MOFCs for use in an impact model requiring hourly input. The downscaling and postprocessing included the use of a daily weather generator and a resampling procedure for creating hourly weather series and the application of a recalibration technique to correct for the original underconfidence of the forecast occurrences of codling moth life phases. Results show a clear skill improvement of up to 3 days in root-mean-square error over the full forecast range when incorporating MOFCs as compared with deterministic benchmark forecasts using climatological information for predicting the timing of codling moth life phases.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2012
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Journal of Applied Meteorology and Climatology Vol. 54, No. 11 ( 2015-11-01), p. 2199-2216
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 54, No. 11 ( 2015-11-01), p. 2199-2216
    Abstract: The breakup of a nocturnal temperature inversion during daytime is studied in an idealized valley by means of high-resolution numerical simulations. Vertical fluxes of heat and mass are strongly reduced as long as an inversion is present; hence it is important to understand the mechanisms leading to its removal. In this study breakup times are determined as a function of the radiative forcing. Further, the effect of the nocturnal inversion on the vertical exchange of heat and mass is quantified. The Weather Research and Forecasting Model is applied to an idealized quasi-two-dimensional valley. The net shortwave radiation is specified by a sine function with amplitudes between 150 and 850 W m−2 during daytime and at zero during the night. The valley inversion is eroded within 5 h for the strongest forcing. A minimal amplitude of 450 W m−2 is required to reach the breakup, in which case the inversion is removed after 11 h. Depending on the forcing amplitude, between 10% and 57% of the energy provided by the surface sensible heat flux is exported out of the valley during the whole day. The ratio of exported energy to provided energy is approximately 1.6 times as large after the inversion is removed as before. More than 5 times the valley air mass is turned over in 12 h for the strongest forcing, whereas the mass is turned over only 1.3 times for 400 W m−2.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2008
    In:  Acta Geophysica Vol. 56, No. 1 ( 2008-3), p. 194-219
    In: Acta Geophysica, Springer Science and Business Media LLC, Vol. 56, No. 1 ( 2008-3), p. 194-219
    Type of Medium: Online Resource
    ISSN: 1895-6572 , 1895-7455
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2008
    detail.hit.zdb_id: 2231673-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2021
    In:  Journal of Glaciology Vol. 67, No. 266 ( 2021-12), p. 1147-1162
    In: Journal of Glaciology, Cambridge University Press (CUP), Vol. 67, No. 266 ( 2021-12), p. 1147-1162
    Abstract: Assessing the avalanche danger level requires snow stratigraphy and instability data. As such data are usually sparse, we investigated whether distributed snow cover modeling can be used to provide information on spatial instability patterns relevant for regional avalanche forecasting. Using Alpine3D, we performed spatially distributed simulations to evaluate snow instability for the winter season 2016–17 in the region of Davos, Switzerland. Meteorological data from automatic weather stations were interpolated to 100 m horizontal resolution and precipitation was scaled with snow depth measurements from airborne laser scanning. Modeled snow instability metrics assessed for two different weak layers suggested that the weak layer closer to the snow surface was more variable. Initially, it was less stable than the weak layer closer to the ground, yet it stabilized faster as the winter progressed. In spring, the simulated snowpack on south-facing slopes stabilized faster than on north-facing slopes, in line with the regional avalanche forecast. In the winter months January to March 2017, simulated instability metrics did not suggest that the snowpack on south-facing slopes was more stable, as reported in the regional avalanche forecast. Although a validation with field data is lacking, these model results still show the potential and challenges of distributed modeling for supporting operational avalanche forecasting.
    Type of Medium: Online Resource
    ISSN: 0022-1430 , 1727-5652
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2140541-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Monthly Weather Review Vol. 142, No. 9 ( 2014-09), p. 3446-3465
    In: Monthly Weather Review, American Meteorological Society, Vol. 142, No. 9 ( 2014-09), p. 3446-3465
    Abstract: The role of horizontal model grid resolution on the development of the daytime boundary layer over mountainous terrain is studied. A simple idealized valley topography with a cross-valley width of 20 km, a valley depth of 1.5 km, and a constant surface heat flux forcing is used to generate upslope flows in a warming valley boundary layer. The goal of this study is to investigate differences in the boundary layer structure of the valley when its topography is either fully resolved, smoothed, or not resolved by the numerical model. This is done by performing both large-eddy (LES) and kilometer-scale simulations with horizontal mesh sizes of 50, 1000, 2000, 4000, 5000, and 10 000 m. In LES mode a valley inversion layer develops, which separates two vertically stacked circulation cells in an upper and lower boundary layer. These structures weaken with decreasing horizontal model grid resolution and change to a convective boundary layer over an elevated plain when the valley is no longer resolved. Mean profiles of the LES run, which are obtained by horizontal averaging over the valley show a three-layer thermal structure and a secondary heat flux maximum at ridge height. Strong smoothing of the valley topography prevents the development of a valley inversion layer with stacked circulation cells and leads to higher valley temperatures due to smaller valley volumes. Additional LES and “1 km” runs over corresponding smoothed valleys reveal that differences occur mainly because of unresolved topography and not because of unresolved turbulence processes. Furthermore, the deactivation of horizontal diffusion improved simulations with 1- and 2-km horizontal resolution.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2002
    In:  Bulletin of the American Meteorological Society Vol. 83, No. 10 ( 2002-10), p. 1501-1504
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 83, No. 10 ( 2002-10), p. 1501-1504
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2002
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...