GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Atmosphere, MDPI AG, Vol. 14, No. 5 ( 2023-05-10), p. 849-
    Abstract: Ship emissions are a major cause of global air pollution, and in particular, emissions from the combustion of bunker fuels, such as heavy fuel oil (HFO), show strong impacts on the environment and human health. Therefore, sophisticated measurement techniques are needed for monitoring. We present here an approach to remotely investigating ship exhaust plumes through onboard measurements from a research vessel in the Baltic Sea. The ship exhaust plumes were detected from a distance of ~5 km by rapid changes in particle number concentration and a variation in the ambient particle size distribution utilizing a condensation particle counter (CPC) and a scanning mobility particle sizer (SMPS) instrument. Ambient single particles in the size range of 0.2–2.5 µm were qualitatively characterized with respect to their chemical signature by single-particle mass spectrometry (SPMS). In particular, the high sensitivity of the measurement method for transition metals in particulate matter (PM) was used to distinguish between the different marine fuels. Despite the high complexity of the ambient aerosol and the adverse conditions at sea, the exhaust plumes of several ships could be analyzed by means of the online instrumentation.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Environments Vol. 10, No. 3 ( 2023-02-27), p. 43-
    In: Environments, MDPI AG, Vol. 10, No. 3 ( 2023-02-27), p. 43-
    Abstract: Riverbed sediments in agricultural landscapes are loaded with phosphorus (P). They may act as a source or sink for riverine P, possibly causing harmful algae blooms and eutrophication in streams and receiving water bodies, including coastal waters. In this study, we aimed at identifying the labile, moderately labile, and stable P fraction (Hedley fractionation) in sediments of a northeastern German river basin (3000 km2). A non-metrical multidimensional scaling (NMDS) was used to identify the most significant environmental predictors of the P fractionation in sediments. The total P contents of the sediments varied over a wide range (698 ± 701 mg P kg−1 sediment−1), spanning from 98 to 2648 mg P kg−1 sediment−1. Adjacent agricultural reference soils had markedly lower total P contents of 354 ± 132 mg P kg−1 soil−1, ranging from 146 to 483 P kg−1 soil−1. There were almost no differences between the P contents of the top (0–2 cm) and the bottom (2–10 cm) layer. The dominant P fractions were the moderately labile (NaOH-P) and the stable (H2SO4-P) fractions, which accounted for more than 50% of the total P at each sampling point. The NMDS revealed that iron and aluminum contents, as well as land use, are significant predictors for the P fractionation of the sediment. The sediment P-composition reflects the P-status of the agriculturally used mineral soils. However, the size of the contributing catchment as well as the length of the water way have no effects on sediment P. In conclusion, sediment P stocks, though variable, may impede the good ecological status of river waters for decades, especially in lowland basins where hydraulic conditions and a very low stream velocity often create low redox and P dissolution conditions in sediments.
    Type of Medium: Online Resource
    ISSN: 2076-3298
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2777960-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Environmental Science: Atmospheres, Royal Society of Chemistry (RSC), Vol. 3, No. 8 ( 2023), p. 1134-1144
    Abstract: Using novel ionization technologies in single-particle mass spectrometry (SPMS), we analyzed the polycyclic aromatic hydrocarbons (PAHs) on individual particles from a research ship engine running on marine gasoil (MGO). We found a rather uniform PAH signature on the majority of particles. The PAH pattern is stable for all engine loads and particle sizes and differs from typical signatures of other pyrogenic and petrogenic PAH sources. Based on this observation, we conducted a field experiment and observed that the appearance of this PAH signature is associated with marine air masses. Moreover, we could detect the plume of a single ship passage at 15–20 km distance by the transient appearance of particles with the same distinct PAH profile. Consequently, we suggest the use of the specific PAH pattern as a new marker to detect and monitor ship emissions, independent of the conventional metal signatures that are not applicable for compliant fuels in emission control areas and coastal waters.
    Type of Medium: Online Resource
    ISSN: 2634-3606
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2023
    detail.hit.zdb_id: 3057711-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 20, No. 12 ( 2020-06-18), p. 7139-7152
    Abstract: Abstract. We describe resonance effects in laser desorption–ionization (LDI) of particles that substantially increase the sensitivity and selectivity to metals in single-particle mass spectrometry (SPMS). Within the proposed scenario, resonant light absorption by ablated metal atoms increases their ionization rate within a single laser pulse. By choosing the appropriate laser wavelength, the key micronutrients Fe, Zn and Mn can be detected on individual aerosol particles with considerably improved efficiency. These ionization enhancements for metals apply to natural dust and anthropogenic aerosols, both important sources of bioavailable metals to marine environments. Transferring the results into applications, we show that the spectrum of our KrF-excimer laser is in resonance with a major absorption line of iron atoms. To estimate the impact of resonant LDI on the metal detection efficiency in SPMS applications, we performed a field experiment on ambient air with two alternately firing excimer lasers of different wavelengths. Herein, resonant LDI with the KrF-excimer laser (248.3 nm) revealed iron signatures for many more particles of the same aerosol ensemble compared to the more common ArF-excimer laser line of 193.3 nm (nonresonant LDI of iron). Many of the particles that showed iron contents upon resonant LDI were mixtures of sea salt and organic carbon. For nonresonant ionization, iron was exclusively detected in particles with a soot contribution. This suggests that resonant LDI allows a more universal and secure metal detection in SPMS. Moreover, our field study indicates relevant atmospheric iron transport by mixed organic particles, a pathway that might be underestimated in SPMS measurements based on nonresonant LDI. Our findings show a way to improve the detection and source attribution capabilities of SPMS for particle-bound metals, a health-relevant aerosol component and an important source of micronutrients to the surface oceans affecting marine primary productivity.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...