GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 61, No. 1 ( 2017-01)
    Abstract: Antimicrobial resistance is recognized as one of the principal threats to public health worldwide, yet the problem is increasing. Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) strains are among the most difficult to treat in clinical settings due to the resistance of MRSA to nearly all available antibiotics. The cyclic anionic lipopeptide antibiotic daptomycin (DAP) is the clinical mainstay of anti-MRSA therapy. The decreased susceptibility to DAP (DAP resistance [DAP r ]) reported in MRSA is frequently accompanied by a paradoxical decrease in β-lactam resistance, a process known as the “seesaw effect.” Despite the observed discordance in resistance phenotypes, the combination of DAP and β-lactams has been proven to be clinically effective for the prevention and treatment of infections due to DAP r MRSA strains. However, the mechanisms underlying the interactions between DAP and β-lactams are largely unknown. In the study described here, we studied the role of mprF with DAP-induced mutations in β-lactam sensitization and its involvement in the effective killing by the DAP-oxacillin (OXA) combination. DAP-OXA-mediated effects resulted in cell wall perturbations, including changes in peptidoglycan insertion, penicillin-binding protein 2 (PBP 2) delocalization, and reduced membrane amounts of PBP 2a, despite the increased transcription of mecA through mec regulatory elements. We have found that the VraSR sensor-regulator is a key component of DAP resistance, triggering mutated mprF -mediated cell membrane (CM) modifications that result in impairment of PrsA location and chaperone functions, both of which are essential for PBP 2a maturation, the key determinant of β-lactam resistance. These observations provide for the first time evidence that synergistic effects between DAP and β-lactams involve PrsA posttranscriptional regulation of CM-associated PBP 2a.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 1496156-8
    detail.hit.zdb_id: 217602-6
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Communications Biology, Springer Science and Business Media LLC, Vol. 3, No. 1 ( 2020-10-22)
    Abstract: Chronic airways infection with methicillin-resistant Staphylococcus aureus (MRSA) is associated with worse respiratory disease cystic fibrosis (CF) patients. Ceftaroline is a cephalosporin that inhibits the penicillin-binding protein (PBP2a) uniquely produced by MRSA. We analyzed 335 S. aureus isolates from CF sputum samples collected at three US centers between 2015–2018. Molecular relationships demonstrated that high-level resistance of preceding isolates to carbapenems were associated with subsequent isolation of ceftaroline resistant CF MRSA. In vitro evolution experiments showed that pre-exposure of CF MRSA to meropenem with further selection with ceftaroline implied mutations in mecA and additional mutations in pbp1 and pbp2 , targets of carbapenems; no effects were achieved by other β-lactams. An in vivo pneumonia mouse model showed the potential therapeutic efficacy of ceftaroline/meropenem combination against ceftaroline-resistant CF MRSA infections. Thus, the present findings highlight risk factors and potential therapeutic strategies offering an opportunity to both prevent and address antibiotic resistance in this patient population.
    Type of Medium: Online Resource
    ISSN: 2399-3642
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2919698-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Elsevier BV ; 2020
    In:  International Journal of Antimicrobial Agents Vol. 55, No. 3 ( 2020-03), p. 105827-
    In: International Journal of Antimicrobial Agents, Elsevier BV, Vol. 55, No. 3 ( 2020-03), p. 105827-
    Type of Medium: Online Resource
    ISSN: 0924-8579
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 1093977-5
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 56, No. 12 ( 2012-12), p. 6192-6200
    Abstract: Methicillin-resistant Staphylococcus aureus (MRSA) has emerged to be one of the most important pathogens both in health care and in community-onset infections. Daptomycin (DAP) is a cyclic anionic lipopeptide recommended for treatment of skin infections, bacteremia, and right-sided endocarditis caused by MRSA. Resistance to DAP (DAP r ) has been reported in MRSA and is mostly accompanied by a parallel decrease in oxacillin resistance, a process known as the “seesaw effect.” Our study provides evidence that the seesaw effect applies to other β-lactams and carbapenems of clinical use, including nafcillin (NAF), cefotaxime (CTX), amoxicillin-clavulanic (AMC), and imipenem (IMP), in heterogeneous DAP r MRSA strains but not in MRSA strains expressing homogeneous β-lactam resistance. The antibacterial efficacy of DAP in combination with β-lactams was evaluated in isogenic DAP-susceptible (DAP s )/Dap r MRSA strains originally obtained from patients that failed DAP monotherapy. Both in vitro (MIC, synergy-kill curve) and in vivo (wax worm model) approaches were used. In these models, DAP and a β-lactam proved to be highly synergistic against both heterogeneous and homogeneous clinical DAP r MRSA strains. Mechanistically, β-lactams induced a reduction in the cell net positive surface charge, reverting the increased repulsion provoked by DAP alone, an effect that may favor the binding of DAP to the cell surface. The ease of in vitro mutant selection was observed when DAP s MRSA strains were exposed to DAP. Importantly, the combination of DAP and a β-lactam prevented the selection of DAP r variants. In summary, our data show that the DAP–β-lactam combination may significantly enhance both the in vitro and in vivo efficacy of anti-MRSA therapeutic options against DAP r MRSA infections and represent an option in preventing DAP r selection in persistent or refractory MRSA infections.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2012
    detail.hit.zdb_id: 1496156-8
    detail.hit.zdb_id: 217602-6
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 56, No. 1 ( 2012-01), p. 92-102
    Abstract: Daptomycin (DAP) is a new class of cyclic lipopeptide antibiotic highly active against methicillin-resistant Staphylococcus aureus (MRSA) infections. Proposed mechanisms involve disruption of the functional integrity of the bacterial membrane in a Ca-dependent manner. In the present work, we investigated the molecular basis of DAP resistance in a group of isogenic MRSA clinical strains obtained from patients with S. aureus infections after treatment with DAP. Different point mutations were found in the mprF gene in DAP-resistant (DR) strains. Investigation of the mprF L826F mutation in DR strains was accomplished by inactivation and transcomplementation of either full-length wild-type or mutated mprF in DAP-susceptible (DS) strains, revealing that they were mechanistically linked to the DR phenotype. However, our data suggested that mprF was not the only factor determining the resistance to DAP. Differential gene expression analysis showed upregulation of the two-component regulatory system vraSR . Inactivation of vraSR resulted in increased DAP susceptibility, while complementation of vraSR mutant strains restored DAP resistance to levels comparable to those observed in the corresponding DR wild-type strain. Electron microscopy analysis showed a thicker cell wall in DR CB5012 than DS CB5011, an effect that was related to the impact of vraSR and mprF mutations in the cell wall. Moreover, overexpression of vraSR in DS strains resulted in both increased resistance to DAP and decreased resistance to oxacillin, similar to the phenotype observed in DR strains. These results support the suggestion that, in addition to mutations in mprF , vraSR contributes to DAP resistance in the present group of clinical strains.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2012
    detail.hit.zdb_id: 1496156-8
    detail.hit.zdb_id: 217602-6
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2013
    In:  Cancer Research Vol. 73, No. 8_Supplement ( 2013-04-15), p. 2960-2960
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 8_Supplement ( 2013-04-15), p. 2960-2960
    Abstract: Previously, we described the antileukemic synergistic interactions between the cyclin-dependent kinase inhibitor flavopiridol (F) and TRAIL in multiple cell lines representing a broad spectrum of human leukemia. With the introduction of new hybrid regimens for flavopiridol-based therapies and advances in the clinical development of TRAIL/TRAIL agonists, a renewed interest in this therapeutic concept has emerged. In an attempt to identify key mechanistic signaling networks, human U937 leukemia cells were treated simultaneously with F (SelleckChem, Houston TX) and TRAIL (Alexis, Enzo, Farmingdale, NY) and analyzed for signaling events associated to cell death induction. We found a dramatic F-mediated shift from cytoprotective NF-kB, AKT and ERK pathways to pro-cell death ceramide and JNK signals. Functional studies using both pharmacological inhibitors and genetically modified cells revealed the functional relevance of these signals. Furthermore, F-mediated transcriptional modifications played key roles in determining and regulating the cross-talk between anti- and pro-cell death pathways. Co-exposure to F resulted in transcriptional down-regulation of genes involved in the regulation of pro-apoptotic JNK including XIAP, Gadd45β and phosphatases DUSP1, -10 and -11. In addition, F induced a significant reduction of multiple anti-apoptotic genes/proteins directly implicated in the pro-apoptotic cascades including (Mcl-1, XIAP, Bcl-2, Bcl-xL, c-Flip, cIAP2/3), and cell cycle modulators (cyclin D1, -E1/E2, CDKs 1,7,9,13,17, p15, p57, p21). However, although in many cases similar changes were observed in F- and TRAIL/F-treated cells, additional factors may have to exist that lead to the potent synergistic interactions observed with the drug combination. In fact, by using clonogenic assays (long term effects), we observed that while TRAIL or F-treated cells were able to recover after treatment, that was not the case in TRAIL/F-exposed cells (% clonogenic survival: T= 82, F=47, TF= 1.4). Time-course analysis by flow cytometry of cell surface localized TRAIL Death Receptors DR4 and DR5 showed that in the presence of F, either alone or in combination with TRAIL, the membrane levels of both receptors were significantly increased during the first 2-6h of treatment. Together, these findings indicate that combined exposure of human acute leukemia cells to TRAIL/FP results in an early mobilization of TRAIL death receptors (DR4, DR5) to the cell surface, effect that is temporally associated with activation of anti-apoptotic ERK, AKT and NF-kB signals; however, activation of DR4/5-mediated apoptotic pathway is later potentiated by a shift toward pro-cell death JNK/ceramide signals that, in association to F-mediated transcriptional effects, results in a dramatic increase in the sensitivity to TRAIL in otherwise TRAIL-resistant human leukemia cells. Citation Format: Swaminathan P. Iyer, Jaime Mejia, Adriana E. Rosato, Steven Grant, Roberto R. Rosato. Flavopiridol-mediated multiple modulatory effects synergistically increase sensitivity to TRAIL-induced cell death in human leukemia cells. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 2960. doi:10.1158/1538-7445.AM2013-2960
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: PLoS ONE, Public Library of Science (PLoS), Vol. 8, No. 4 ( 2013-4-23), p. e61083-
    Type of Medium: Online Resource
    ISSN: 1932-6203
    Language: English
    Publisher: Public Library of Science (PLoS)
    Publication Date: 2013
    detail.hit.zdb_id: 2267670-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Antibiotics Vol. 10, No. 11 ( 2021-10-26), p. 1299-
    In: Antibiotics, MDPI AG, Vol. 10, No. 11 ( 2021-10-26), p. 1299-
    Abstract: Staphylococcus pseudintermedius is an important pathogen responsible for infections in dogs and in humans. The emergence and dissemination of methicillin-resistant S. pseudintermedius (MRSP) and the multidrug resistance frequently seen in this species make difficult the treatment of these pathogens. The cefoxitin disk is widely used as a marker of methicillin resistance mediated by the mecA gene in Staphylococcus aureus and other staphylococcal species; however, it is not useful to detect β-lactam resistance of MRSP in clinical microbiology laboratories. The purpose of this study was to elucidate the molecular bases of the dissociated phenotype between oxacillin and cefoxitin antibiotics. By using a combinatorial approach that included the Penicillin-Binding Proteins’ (PBP) profile, their affinity for different β-lactam antibiotics and the analyses of PBPs’ sequence, we provide evidence that PBP4 showed still affinity for its target cefoxitin, impairing its phenotypic resistant detection in MRSP. Together, these findings provide evidence that S. pseudintermedius PBP4 is directly associated with the dissociated oxacillin and cefoxitin phenotype.
    Type of Medium: Online Resource
    ISSN: 2079-6382
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2681345-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: mSphere, American Society for Microbiology, Vol. 4, No. 1 ( 2019-02-27)
    Abstract: Methicillin-resistant Staphylococcus aureus (MRSA) threatens human health in hospital and community settings. The lipopeptide antibiotic daptomycin (DAP) is a frequently used treatment option for MRSA infection. DAP exposure can cause bacterial resistance because mutations are induced in genes implicated in cell membrane and cell wall metabolism. Adaptations aimed at surviving antimicrobial pressure can affect bacterial physiology and modify in vivo aptitude and pathogenesis. In this study, clinical DAP-susceptible (DAP s ) and DAP-resistant (DAP r ) MRSA isolates were used to investigate associations between DAP resistance and staphylococcal virulence. We previously found that VraSR is a critical sensor of cell membrane/wall homeostasis associated with DAP acquisition during MRSA infection. The present study found that DAP r CB1634 and CB5014 MRSA strains with vraSR upregulation were less virulent than their susceptible counterparts, CB1631 and CB5013. Differential gene-transcription profile analysis revealed that DAP r CB1634 had decreased agr two-component system expression, virulence factors, and highly suppressed hemolysis activity. Functional genetic analysis performed in DAP r CB1634 strains using vraSR inactivation followed by gene complementation found that vraSR acted as a transcriptional agrA regulator. These results indicated that VraSR has a broad range of regulatory functions. VraSR also appeared to affect DAP r adherence to epithelial cells, which would affect DAP r strain colonization and survival in the host. The correlation between DAP resistance and decreased virulence was also found in the CB5013 (DAP s ) and CB5014 (DAP r ) pair. Taken together, these findings are the first evidence that DAP resistance and MRSA virulence are tightly connected and involve compromised expression of regulatory and virulence determinants. IMPORTANCE Methicillin-resistant S. aureus continues to develop resistance to antimicrobials, including those in current clinical use as daptomycin (DAP). Resistance to DAP arises by mutations in cell membrane and cell wall genes and/or upregulation of the two-component VraSR system. However, less is known about the connection between the pathogen and virulence traits during DAP resistance development. We provide new insights into VraSR and its regulatory role for virulence factors during DAP resistance, highlighting coordinated interactions that favor the higher persistence of MRSA DAP-resistant strains in the infected host.
    Type of Medium: Online Resource
    ISSN: 2379-5042
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 2844248-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 58, No. 10 ( 2014-10), p. 5736-5746
    Abstract: Methicillin-resistant Staphylococcus aureus (MRSA) is an important infectious human pathogen responsible for diseases ranging from skin and soft tissue infections to life-threatening endocarditis. β-Lactam resistance in MRSA involves acquisition of penicillin-binding protein 2a (PBP2a), a protein with low affinity for β-lactams that mediates cell wall assembly when the normal staphylococcal PBPs (PBP1 to -4) are blocked by these agents. Many MRSA strains display heterogeneous expression of resistance (HeR) against β-lactam antibiotics. The β-lactam-mediated homoresistant (HoR) phenotype is associated with both expression of the mecA gene and activation of the LexA-RecA-mediated SOS response, a regulatory network induced in response to DNA damage. Ceftaroline (CPT) is the only FDA-approved cephalosporin targeting PBP2a. We investigated the mechanistic basis of CPT activity against HeR-MRSA strains, including a set of strains displaying an intermediate level of resistance to CPT. Mechanistically, we found that 1 exposure of HeR-MRSA to subinhibitory concentrations of CPT selected for the HoR derivative activated the SOS response and increased mutagenesis. Importantly, CPT-selected HoR cells remained susceptible to CPT while still being resistant to most β-lactams, and 2-CPT activity in HeR-MRSA resided in an attenuated induction of mecA expression in comparison to other β-lactams. In addition, 3-CPT intermediate-resistant strains displayed a significant increase in CPT-induced mecA expression accompanied by mutations in PBP2, which together may interfere with the complete repression by CPT of both PBP2a and PBP2a-PBP2 interactions and thus be a determining factor in the low level of CPT resistance in the absence of mecA gene mutations. The present study provides mechanistic evidence that CPT represents an alternative therapeutic option for the treatment of heteroresistant MRSA strains.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2014
    detail.hit.zdb_id: 1496156-8
    detail.hit.zdb_id: 217602-6
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...