GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Virology, American Society for Microbiology, Vol. 79, No. 3 ( 2005-02), p. 1635-1644
    Abstract: Human monoclonal antibodies (MAbs) were selected from semisynthetic antibody phage display libraries by using whole irradiated severe acute respiratory syndrome (SARS) coronavirus (CoV) virions as target. We identified eight human MAbs binding to virus and infected cells, six of which could be mapped to two SARS-CoV structural proteins: the nucleocapsid (N) and spike (S) proteins. Two MAbs reacted with N protein. One of the N protein MAbs recognized a linear epitope conserved between all published human and animal SARS-CoV isolates, and the other bound to a nonlinear N epitope. These two N MAbs did not compete for binding to SARS-CoV. Four MAbs reacted with the S glycoprotein, and three of these MAbs neutralized SARS-CoV in vitro. All three neutralizing anti-S MAbs bound a recombinant S1 fragment comprising residues 318 to 510, a region previously identified as the SARS-CoV S receptor binding domain; the nonneutralizing MAb did not. Two strongly neutralizing anti-S1 MAbs blocked the binding of a recombinant S fragment (residues 1 to 565) to SARS-CoV-susceptible Vero cells completely, whereas a poorly neutralizing S1 MAb blocked binding only partially. The MAb ability to block S1-receptor binding and the level of neutralization of the two strongly neutralizing S1 MAbs correlated with the binding affinity to the S1 domain. Finally, epitope mapping, using recombinant S fragments (residues 318 to 510) containing naturally occurring mutations, revealed the importance of residue N479 for the binding of the most potent neutralizing MAb, CR3014. The complete set of SARS-CoV MAbs described here may be useful for diagnosis, chemoprophylaxis, and therapy of SARS-CoV infection and disease.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2005
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: European Journal of Immunology, Wiley, Vol. 24, No. 11 ( 1994-11), p. 2818-2825
    Abstract: The SH2 domain‐containing transforming Shc protein has been implicated in mitogenic signaling via several surface receptors through p21 ras . Following tyrosine phosphorylation by either receptor or non‐receptor tyrosine kinases, Shc may interact with the adaptor protein Grb2, which is linked to Sos1, a guanine nucleotide exchange factor for human ras. Ligation of the antigen receptor complex on B cells (BCR) is known to activate various intracellular signaling pathways, which may accumulate in mitogenic responses. With respect to the initial steps, the activation of BCR‐associated non‐receptor tyrosine kinases appears to be indispensible. In this report we show that Shc proteins become tyrosine phosphorylated after BCR ligation on both transformed and normal human B cells. This is accompanied by the association of Shc with Grb2 proteins and a yet unidentified 145‐kDa tyrosine phosphorylated protein. Subcellular fractionation revealed that this activation‐induced multimeric Shc complex rapidly translocates towards the plasma membrane. Co‐ligation of the BCR with the CD19 molecule results in a marked increase of these events, whereas CD19 cross‐linking alone does not induce Shc tyrosine phosphorylation or translocation. Thus, in B cells the Shc complex may represent a molecular junction between the BCR and the mitogenic p21 ras cascade.
    Type of Medium: Online Resource
    ISSN: 0014-2980 , 1521-4141
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 1994
    detail.hit.zdb_id: 1491907-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Brain, Oxford University Press (OUP), Vol. 143, No. 8 ( 2020-08-01), p. 2437-2453
    Abstract: In pleiotropic diseases, multiple organ systems are affected causing a variety of clinical manifestations. Here, we report a pleiotropic disorder with a unique constellation of neurological, endocrine, exocrine, and haematological findings that is caused by biallelic MADD variants. MADD, the mitogen-activated protein kinase (MAPK) activating death domain protein, regulates various cellular functions, such as vesicle trafficking, activity of the Rab3 and Rab27 small GTPases, tumour necrosis factor-α (TNF-α)-induced signalling and prevention of cell death. Through national collaboration and GeneMatcher, we collected 23 patients with 21 different pathogenic MADD variants identified by next-generation sequencing. We clinically evaluated the series of patients and categorized the phenotypes in two groups. Group 1 consists of 14 patients with severe developmental delay, endo- and exocrine dysfunction, impairment of the sensory and autonomic nervous system, and haematological anomalies. The clinical course during the first years of life can be potentially fatal. The nine patients in Group 2 have a predominant neurological phenotype comprising mild-to-severe developmental delay, hypotonia, speech impairment, and seizures. Analysis of mRNA revealed multiple aberrant MADD transcripts in two patient-derived fibroblast cell lines. Relative quantification of MADD mRNA and protein in fibroblasts of five affected individuals showed a drastic reduction or loss of MADD. We conducted functional tests to determine the impact of the variants on different pathways. Treatment of patient-derived fibroblasts with TNF-α resulted in reduced phosphorylation of the extracellular signal-regulated kinases 1 and 2, enhanced activation of the pro-apoptotic enzymes caspase-3 and -7 and increased apoptosis compared to control cells. We analysed internalization of epidermal growth factor in patient cells and identified a defect in endocytosis of epidermal growth factor. We conclude that MADD deficiency underlies multiple cellular defects that can be attributed to alterations of TNF-α-dependent signalling pathways and defects in vesicular trafficking. Our data highlight the multifaceted role of MADD as a signalling molecule in different organs and reveal its physiological role in regulating the function of the sensory and autonomic nervous system and endo- and exocrine glands.
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Infection and Immunity, American Society for Microbiology, Vol. 79, No. 3 ( 2011-03), p. 1025-1032
    Abstract: Clostridium sordellii is an important pathogen of humans and animals, causing a range of diseases, including myonecrosis, sepsis, and shock. Although relatively rare in humans, the incidence of disease is increasing, and it is associated with high mortality rates, approaching 70%. Currently, very little is known about the pathogenesis of C. sordellii infections or disease. Previous work suggested that the lethal large clostridial glucosylating toxin TcsL is the major virulence factor, but a lack of genetic tools has hindered our ability to conclusively assign a role for TcsL or, indeed, any of the other putative virulence factors produced by this organism. In this study, we have developed methods for the introduction of plasmids into C. sordellii using RP4-mediated conjugation from Escherichia coli and have successfully used these techniques to insertionally inactivate the tcsL gene in the reference strain ATCC 9714, using targetron technology. Virulence testing revealed that the production of TcsL is essential for the development of lethal infections by C. sordellii ATCC 9714 and also contributes significantly to edema seen during uterine infection. This study represents the first definitive identification of a virulence factor in C. sordellii and opens the way for in-depth studies of this important human pathogen at the molecular level.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2011
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 191, No. 20 ( 2009-10-15), p. 6345-6351
    Abstract: Clostridium perfringens is a normal gastrointestinal organism that is a reservoir for antibiotic resistance genes and can potentially act as a source from which mobile elements and their associated resistance determinants can be transferred to other bacterial pathogens. Lincomycin resistance in C. perfringens is common and is usually encoded by erm genes that confer macrolide-lincosamide-streptogramin B resistance. In this study we identified strains that are lincomycin resistant but erythromycin sensitive and showed that the lincomycin resistance determinant was plasmid borne and could be transferred to other C. perfringens isolates by conjugation. The plasmid, pJIR2774, is the first conjugative C. perfringens R-plasmid to be identified that does not confer tetracycline resistance. Further analysis showed that resistance was encoded by the lnuP gene, which encoded a putative lincosamide nucleotidyltransferase and was located on tIS Cpe8 , a functional transposable genetic element that was a member of the IS 1595 family of transposon-like insertion sequences. This element had significant similarity to the mobilizable lincomycin resistance element tIS Sag10 from Streptococcus agalactiae . Like tIS Sag10 , tIS Cpe8 carries a functional origin of transfer within the resistance gene, allowing the element to be mobilized by the conjugative transposon Tn 916 . The similarity of these elements and the finding that they both contain an oriT -like region support the hypothesis that conjugation may result in the movement of DNA modules that are not obviously mobile since they are not linked to conjugation or mobilization functions. This process likely plays a significant role in bacterial adaptation and evolution.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2009
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society for Microbiology ; 2007
    In:  Journal of Bacteriology Vol. 189, No. 20 ( 2007-10-15), p. 7290-7301
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 189, No. 20 ( 2007-10-15), p. 7290-7301
    Abstract: Clostridium difficile binary toxin (CDT) is an actin-specific ADP-ribosyltransferase that is produced by various C. difficile isolates, including the “hypervirulent” NAP1/027 epidemic strains. In contrast to the two major toxins from C. difficile , toxin A and toxin B, little is known about the role of CDT in virulence or how C. difficile regulates its production. In this study we have shown that in addition to the cdtA and cdtB toxin structural genes, a functional cdt locus contains a third gene, here designated cdtR , which is predicted to encode a response regulator. By introducing functional binary toxin genes into cdtR + and cdtR -negative strains of C. difficile , it was established that the CdtR protein was required for optimal expression of binary toxin. Significantly increased expression of functional binary toxin was observed in the presence of a functional cdtR gene; an internal deletion within cdtR resulted in a reduction in binary toxin production to basal levels. Strains that did not carry intact cdtAB genes or cdtAB pseudogenes also did not have cdtR , with the entire cdt locus, or CdtLoc, being replaced by a conserved 68-bp sequence. These studies have shown for the first time that binary toxin production is subject to strict regulatory control by the response regulator CdtR, which is a member of the LytTR family of response regulators and is related to the AgrA protein from Staphylococcus aureus .
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2007
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...