GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 15 ( 2024-5-15)
    Abstract: Acute myeloid leukemia (AML) is an aggressive heterogeneous disease characterized by several alterations of the immune system prompting disease progression and treatment response. The therapies available for AML can affect lymphocyte function, limiting the efficacy of immunotherapy while hindering leukemia-specific immune reactions. Recently, the treatment based on Venetoclax (VEN), a specific B-cell lymphoma 2 (BCL-2) inhibitor, in combination with hypomethylating agents (HMAs) or low-dose cytarabine, has emerged as a promising clinical strategy in AML. To better understand the immunological effect of VEN treatment, we characterized the phenotype and immune checkpoint (IC) receptors’ expression on CD4 + and CD8 + T cells from AML patients after the first and second cycle of HMA in combination with VEN. HMA and VEN treatment significantly increased the percentage of naïve CD8 + T cells and TIM-3 + CD4 + and CD8 + T cells and reduced cytokine-secreting non-suppressive T regulatory cells (Tregs). Of note, a comparison between AML patients treated with HMA only and HMA in combination with VEN revealed the specific contribution of VEN in modulating the immune cell repertoire. Indeed, the reduction of cytokine-secreting non-suppressive Tregs, the increased TIM-3 expression on CD8 + T cells, and the reduced co-expression of PD-1 and TIM-3 on both CD4 + and CD8 + T cells are all VEN-specific. Collectively, our study shed light on immune modulation induced by VEN treatment, providing the rationale for a novel therapeutic combination of VEN and IC inhibitors in AML patients.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2024
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cell Biology and Toxicology, Springer Science and Business Media LLC, Vol. 39, No. 3 ( 2023-06), p. 795-811
    Abstract: Doxorubicin (Dox) is one of the most commonly used anthracyclines for the treatment of solid and hematological tumors such as B−/T cell acute lymphoblastic leukemia (ALL). Dox compromises topoisomerase II enzyme functionality, thus inducing structural damages during DNA replication and causes direct damages intercalating into DNA double helix. Eukaryotic cells respond to DNA damages by activating the ATM-CHK2 and/or ATR-CHK1 pathway, whose function is to regulate cell cycle progression, to promote damage repair, and to control apoptosis. We evaluated the efficacy of a new drug schedule combining Dox and specific ATR (VE-821) or CHK1 (prexasertib, PX) inhibitors in the treatment of human B−/T cell precursor ALL cell lines and primary ALL leukemic cells. We found that ALL cell lines respond to Dox activating the G2/M cell cycle checkpoint. Exposure of Dox-pretreated ALL cell lines to VE-821 or PX enhanced Dox cytotoxic effect. This phenomenon was associated with the abrogation of the G2/M cell cycle checkpoint with changes in the expression pCDK1 and cyclin B1, and cell entry in mitosis, followed by the induction of apoptosis. Indeed, the inhibition of the G2/M checkpoint led to a significant increment of normal and aberrant mitotic cells, including those showing tripolar spindles, metaphases with lagging chromosomes, and massive chromosomes fragmentation. In conclusion, we found that the ATR-CHK1 pathway is involved in the response to Dox-induced DNA damages and we demonstrated that our new in vitro drug schedule that combines Dox followed by ATR/CHK1 inhibitors can increase Dox cytotoxicity against ALL cells, while using lower drug doses. Graphical abstract • Doxorubicin activates the G2/M cell cycle checkpoint in acute lymphoblastic leukemia (ALL) cells. • ALL cells respond to doxorubicin-induced DNA damages by activating the ATR-CHK1 pathway. • The inhibition of the ATR-CHK1 pathway synergizes with doxorubicin in the induction of cytotoxicity in ALL cells. • The inhibition of ATR-CHK1 pathway induces aberrant chromosome segregation and mitotic spindle defects in doxorubicin-pretreated ALL cells.
    Type of Medium: Online Resource
    ISSN: 0742-2091 , 1573-6822
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 1496562-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Hematological Oncology, Wiley, Vol. 39, No. 4 ( 2021-10), p. 580-583
    Type of Medium: Online Resource
    ISSN: 0278-0232 , 1099-1069
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2001443-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Hematological Oncology, Wiley, Vol. 40, No. 4 ( 2022-10), p. 734-742
    Abstract: Antigen‐directed target therapy for B‐cell acute lymphoblastic leukemia (B‐ALL) is now the standard of care for relapsed/refractory (R/R) disease. A comprehensive determination of the target itself is mandatory to aid physician's choice. We determined baseline Cluster of differentiation 22 (CD22) expression percentage and fluorescent intensity on lymphoblasts of 30 patients with R/R B‐ALL treated with anti‐CD22 immunoconjugate drug Inotuzumab Ozogamicin (INO) and analyzed the impact of both parameters on patient outcome. Most patients (24/30, 80%) had a high leukemic blast CD22‐positivity defined as ≥90%. We did not observe a benefit in terms of complete remission, overall survival (OS) and duration of response (DoR) for patients with CD22 ≥ 90% versus CD22  〈  90%. Concerning CD22‐FI quartile analysis we appreciated a trend for superior response rates in higher quartiles (Q 2 ‐Q 4 ) compared to Q 1 and a significant benefit in terms of OS and DoR for patients with higher CD22‐FI. INO demonstrates to be effective also in patients with lower CD22 expression, but therapeutical benefits are more evident in patients with higher CD22‐FI. The evaluation of both CD22 percentage and CD22‐FI of the leukemic blast may help physicians in therapeutic choices for R/R B‐ALL patients when multiple treatment options are available, although no CD22 expression threshold can currently be identified below which INO should be considered not effective.
    Type of Medium: Online Resource
    ISSN: 0278-0232 , 1099-1069
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2001443-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2623-2623
    Abstract: Introduction: Adult ALL represents a biologically and clinically heterogeneous group. Incidence and cure rates differ among children and adults. In adults, ALL is less common and generally carries a worse prognosis with shorter long-term survival probability. Although the remarkable progress made in the treatment of ALL in children and, with less efficacy, in adults, several ALL subtypes continue to have a poor prognosis. Aims: focus our attention on adult Ph-negative ALL pts using whole exome experiments to discover novel insights into the mechanisms involved in leukemogenesis and to develop genetic models that accurately define novel ALL subtypes based on the genomic profile of individual patients (pts). Patients and Methods: we performed the WES analysis of 72 samples of B-cell precursor ALL acute lymphoblastic leukemia (B-ALL) cases using the Illumina Hiseq2000 platform. All were adult patients (18-79 years) and were negative for Philadelphia chromosome (BCR-ABL) translocation and negative for the recurrent known molecular rearrangements (E2A-PBX, TEL, AML1-MLL-AF4). Peripheral blood and/or bone marrow samples were collected from adult B-ALL at the time of diagnosis and/or at the time of relapse. Matched samples of primary tumour (peripheral blood or bone marrow) and germline DNA from buccal swab or peripheral blood at the remission time were analyzed. MuTect and GATK tools to call mutations (Single Nucleotide Variants=SNVs and/or INDELs) were used and we selected variants with a minor allele frequency (MAF) lower than 0.05 and filtered using dbSNP142. Results: The WES analysis of the 41 Ph negative cases identified 735 point mutations and 25 mutations that occur in splicing sites in 651 genes. The average number of somatic coding mutations was 17 per case (range 1-47). 38 genes were recurrently mutated with 11 genes mutated in at least 3 cases: PAX5, PRDM12, JAK2, TTN, TP53, PTPN11, PKHD1L1, CUL3, PIEZO2, TACC2, RBBP6. The first two genes present more point mutations, in 5 pts and in 4 pts respectively. Some mutations in genes like PAX5, JAK2, TP53, PTPN11 were deeply described in acute lymphoblastic leukemic; PKHD1L1 was described mutated in one case of T-cell large granular lymphocyte leukemia; PRDM12 disruption was described in an aggressive CML case;TACC2 expression in infant ALL was described as predictor of outcome andtranscription factor and RBBP6 expression was differentially expressed in leukemic cells that overexpressed Gfi-1B gene. The alterations in the remaining genes were not previously described in ALL and/or leukemia. Using KEGG database we mapped the 651 mutated genes to detect the mostly represented pathways. The following resulted significantly enriched (p=0.0004 to p=0.006): Jak-STAT signaling pathway (11 genes), Cell Cycle (13), Dilated Cardiomyophaty (9), Hypertrophic cardiomyophaty (8), Axon Guidance (9), Calcium Signaling pathways (10), Huntington's disease (10), Wnt signaling pathway (9), Metabolic pathways (30), Pacreat Secretion (7). Preliminar analysis lead considering both SNVs and INDELs, detected totally 956 gene variations. Again the pathways mainly significantly (p=8.05e-05 to p=0.0076) affected are the Jak-STAT signaling pathway (14) and the Cell Cycle (13). Also Huntington's disease (14), Dilated Cardiomyophaty (10), Hypertrophic cardiomyophaty (9), Wnt signaling pathway (12), Metabolic pathways (40 genes), Calcium Signaling pathways (12), Metabolic pathways (40), TGF-Beta signaling pathway (8), Pacreat Secretion (8) were alterated. Prediction of protein interactions, using STRING database, generated a network with the genes mutated in more than 5 patients. Then, the nodes were clustered with K-means identifying 4 groups that contain several of our analysis variations (Fig.1). Conclusions: Point mutations are the prevalent mechanism identified in our pts cohort (75.5%). INDELs are less represented (21.5%). Altogether the identified mutations may help cluster Ph- ALL pts. Analysis of SNVs confirmed mutations in important genes known to be involved in leukemogenesis. Relevant alterations affect crucial pathways as cell cycle and Jak-STAT signaling which may be effectively targeted by currently available JAK inhibitors. Supported by: ELN, AIL, AIRC, PRIN, progetto Regione-Università 2010-12 (L. Bolondi), FP7 NGS-PTL project. Disclosures Haferlach: MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Martinelli:AMGEN: Consultancy; Ariad: Consultancy; Pfizer: Consultancy; ROCHE: Consultancy; MSD: Consultancy; BMS: Consultancy, Speakers Bureau; Novartis: Consultancy, Speakers Bureau.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 11 ( 2021-9-30)
    Abstract: FMS-like tyrosine kinase 3 (FLT3) is among the most common driver genes recurrently mutated in acute myeloid leukemia (AML), accounting for approximately 30% of cases. Activating mutations of the FLT3 receptor include internal tandem duplications (ITD) that map to the auto-inhibitory juxtamembrane (JM) domain or point mutations within the tyrosine kinase domain (TKD). Several FLT3 tyrosine kinase inhibitors have been developed in the last few years, but midostaurin is currently the only one approved for the treatment of newly diagnosed patients harboring FLT3 mutations. Here we describe for the first time a novel in-frame deletion in exon 14 (JM domain) of the FLT3 gene, that we identified in a young woman with CBFb-MYH11-positive AML. We demonstrated that this novel FLT3 variant is pathogenic, since it is responsible for constitutive activation of FLT3 receptor. Finally, ex-vivo studies demonstrated that this novel mutation is sensitive to midostaurin.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 35, No. 15_suppl ( 2017-05-20), p. 11611-11611
    Abstract: 11611 Background: Necroptosis is a type of necrotic cell death involving several genes transcription and activation of molecular mechanisms as death receptors, interferon, toll-like receptors, intracellular RNA and DNA sensors.The process is leading by the family of receptor-interacting protein kinase ( RIPK3, RIPK2, RIPK1) and the MLKL substrate. Losses of RIPK3 or MLKL, as well as deficiency in apoptosis, could allow tumor cells to escape the immunomediated cells death (ICD). Methods: We performed SNP Arrays (Cytoscan HD and SNP 6.0, Affymetrix) on a cohort of 300 non-M3 AML patients at diagnosis and we analyzed the Overall Survival (OS) of our patients with deficiency on necroptosis pathways. Survival was analyzed with Kaplan-Mayer method and Log-Rank test. We further analyze the relevance of different prognostic factors by the use of COX-Hazard Ratio statistical analysis. Results: We find that 18 patients presented a loss of RIPK1 or MLKL (nobody presented losses in RIPK3/RIPK2) and 13/18 patients were older than 65 years old. The Overall Survival (OS) of patients with alterations in these genes is significantly lower than control group, with a median OS of 3 vs 6 month respectively (p 〈 .0.001). With Fisher Exact Test we further demonstrate that copy number loss of RIPK1 or MLKL are associate to loss of TP53 or FANCAgenes, complex karyotype and advanced age. COXHR model with RIPK1 or MLKL loss, BRACA1 loss, TP53 mutation, FANCA loss, secondary disease and diagnosis karyotype considered as categorical variable shows that necroptosis deficiency (HR 1.98, CI 95% 1.04-3.78), TP53mutation , and secondary AML are independent negative prognostic factors in an optimal model. Conclusions: Our study shows that losses in necroptosis pathways are an uncommon alteration in AML, prevalent in old population. Moreover, we hypothesize that the loss of genes involved in necroptosis could be a real mechanism of tumor immune-escape and could be a rational to select patients that have high probability to be resistant at chemotherapy promoting ICD mechanism. Acknowledgment: ELN,AIL,AIRC, progetto Regione-Università 2010-12, FP7 NGS-PTL project,HARMONY.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2017
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 35, No. 15_suppl ( 2017-05-20), p. 7038-7038
    Abstract: 7038 Background: Nowadays, science is debating if autophagy in cancer can lead to therapy resistance or it can favor apoptosis. Autophagy pathways are involved pro-apoptotic mechanism, or they can improve stresses survival eliminating damaged mitochondria and proteins. Levels and activity of pro-apoptotic and anti-apoptotic proteins (eg. bcl-2 and p53), high levels of cAMP, and a pink/park complex could play as fulcrum on this lever. Our study aims to define the role of autophagy in AML. Methods: We analyzed 148 consecutive non M3 AML with Affymetrix SNP array. We screened all patients for TP53, FLT3, NMP1 mutations. Patients was treated with intensive induction chemotherapy regimens. Survival data were collected prospectively, with a median follow-up of 18 months. Results: Autophagy alteration (gene group 1: ULK1 CHR11; ULK1 CHR17; BECN1; ATG14; AMBRA1; UVRAG; ATG9A; ATG9B; PIK3C3; PIK3R4) was related to lower Complete Remission rate (CR%) after induction in univariate (p 〈 .001) and multivariable regression model with age, karyotype, secondary AML, TP53 mutation (p = .014); autophagy alteration shown to confer worst Overal Survival (OS) (p 〈 .001) and was significantly associated with complex karyotype and TP53 mutation (p 〈 .001). We detected significant differences in term of survival independently both in gain and loss in group 1 genes (p 〈 .001). Alterations in genes in cAMP pathway (group 2: SESN1; PRKAA1 CHR 3; PRKAB1: PRKAA1 CHR 1: PRKAG1 CHR11; PRKAG1 CHR 7; PRKAG3; PRKAB1) and in genes that could be related to a switch from a physiological role of autophagy to a resiliency mechanism (group 3: CCND1; BCL2; PINK1; PARK2; TP53; MDM1; MDM4) showed to confer worst OS (p 〈 .001 in both groups); Alteration in group 2 and group 3 were related to lower CR% after induction (p 〈 .001 in both groups). Whole Exome Sequencing on 56 patients in our set did not found any significant mutation in genes we analyzed with the exception of TP53. Conclusions: Alterations in autophagy regulator genes are associated with poor prognosis and therapy resistance. A loss in autophagy could block apoptosis, a gain could confer cell resiliency. Acknowledgements: ELN, AIL, AIRC, Progetto Regione-Università 2010-12,FP7 NGS-PTL, HARMONY
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2017
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 35, No. 15_suppl ( 2017-05-20), p. 11622-11622
    Abstract: 11622 Background: SNP microarray can detect Copy Number Alterations (CNAs) which could be predictive of response and can help define therapeutic strategies. Our aim is to improve conventional cytogenetic analysis and identify new genetic alterations relevant to leukemogenesis by a SNP array-based genotyping approach. Methods: We performed SNP 6.0/Cytoscan HD (Affymetrix) on 235 Acute Myeloid Leukemia (AML) patients at diagnosis. Seventy-eight/235 samples were also performed by Whole Exome Sequencing, WES (HiSeq,Illumina). SNP Array data were analyzed by Nexus Copy Number (BioDiscovery) and R Core Team. Results: We found several genes preferentially deleted, including MRPS5 (14.8%), PHF6 (9.3%), SCAPER (7.2%), CASK (5.9%), WNK (4.6%), STAG2 (4.2%), LRRK1 (3.4%), PALB2 (3.4%), genes preferentially amplified were RABL2B (16.1%), NF2 (10.2%), NBPF9 (7.6%), JAK2 (6.8%), RB1, NF1 and KMT2A (4.2%), PTEN (3.4%), TP73 and SMAD2 (2.5%). Single-copy losses and deletions were enriched (p 〈 .001) for genes mapping in these pathways: aberrant PD-1 signaling, loss of function of SMAD4 in cancer and SMAD4 MH2 Domain mutants in cancer. The pathways significantly (p 〈 .001) deregulated in our cohort with single copy gain and homozygous amplification were: regulation of transcription and nucleic acid, negative regulation of metabolic processes, constitutive signaling by aberrant PI3K in cancer and PI3K/AKT network. In order to define driver alterations, we correlate deletions and losses with mutational data. We found losses are also targeted by mutations ( BRCA2, LRRK1), while deleted genes, as CASK, CDK6 and MAPT, were involved in pathways affected by genomic mutations ( CASK deletion and MPP6 mutation, CDK6 deletion and PPM1D mutation, MAPT deletion and SPAG5mutation). Conclusions: We have identified new CNAs and pathways involving novel potential leukemia-related genes. The comparison between SNP and WES data could provide important findings on prognosis of AML patients. Minimal deleted regions of genes in deregulated pathways deserve further investigation in order to identify new genes which could be relevant AML biomarkers. Ackn: ELN, AIL, AIRC,prog. Regione-Università 2010-12 (L. Bolondi),FP7 NGS-PTL project,HARMONY.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2017
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 484-484
    Abstract: Background: AML is a heterogeneous disease. The karyotype provides important prognostic information that influences therapy and outcome. Identification of AML patients (pts) with poor prognosis such as those with complex karyotype (CK) has great interest and impact on therapeutic strategies. TP53 is the most frequently mutated gene in human tumours. TP53 mutation rate in AML was reported to be low (2.1%), but the incidence of TP53 mutations in AML with a complex aberrant karyotype is still debated. Aims: To investigate the frequency of TP53 mutations in adult AML pts, the types of mutations, the associations with recurrent cytogenetic abnormalities and their relationship with response to therapy, clinical outcome and finally their prognostic role. To this aim, we focused on a subgroup of TOT/886 AML pts treated at the Serˆgnoli Institute of Bologna between 2002 and 2013. Patients and Methods: 886 AML patients were analysed for morphology, immunophenotype, cytogenetic and for a panel of genetic alterations (FLT3, NPM1, DNMT3A, IDH1, IDH2 mutations, WT-1 expression, CBF fusion transcripts). Of these, 172 adult AML pts were also examined for TP53 mutations using several methods, including Sanger sequencing, Next-Generation Deep-Sequencing (Roche) and HiSeq 2000 (Illumina) platform. 40 samples were genotyped with Genome-Wide Human SNP 6.0 arrays or with CytoScan HD Array (Affymetrix) and analysed by Nexus Copy Numberª v7.5 (BioDiscovery). Results: Of the 886 AML patients, 172 pts were screened for TP53 mutations. Sanger sequencing analysis detected TP53 mutations in 29/172 AML patients with 36 different types of mutations; seven pts (4%) had 2 mutations. At diagnosis, the median age of TP53 mutated and wild type patients was 68 years (range 42-86), and 65 years (range 22-97) respectively. Median WBC count was 8955/mmc (range 580-74360/mmc) and 1240/mmc (range 400-238000/mmc). Conventional cytogenetics showed that: a) 52 pts (30,2%) had 3 or more chromosome abnormalities, i.e. complex karyotype; b) 71 (41,3%) presented with one or two cytogenetic abnormalities (other-AML); c) 34 pts (19,8%) had normal karyotype. Most of the TP53 mutated pts (23/29, 79.3%) had complex karyiotype, whereas only 6/29 mutated pts had “no complex Karyotype” (21% and 3% of the entire screened population, respectively). Overall, TP53 frequency was 44.2% in the complex karyotype group, suggesting a pathogenetic role of TP53 mutations in this subgroup of leukemias. As far as the types of TP53 alterations regards, the majority of mutations (32) were deleterious.. Copy Number Alterations (CNAs) analysis performed on 40 cases by Affymetrix SNP arrays showed the presence of several CNAs in all cases: they ranged from loss or gain of the full chromosome (chr) arm to focal deletions and gains targeting one or few genes involving macroscopic ( 〉 1.5 Mbps), submicroscopic genomic intervals (50 Kbps - 1.5 Mbps) and LOH ( 〉 5 Mbps) events. Of relevance, gains located on chr 8 were statistically associated with TP53 mutations (p = 0.001). In addition to the trisomy of the chr 8, others CNAs, located on chromosomes 5q, 3, 12, 17 are significantly associated (p = 0.05) with TP53 mutations. WES analysis was performed in 37 pts: 32 TP53 were wt while 5 pts were TP53 mutated. Interestingly, TP53 mutated patients had more incidence of complex karyotype, more aneuploidy state, more number of somatic mutations (median mutation rate 30/case vs 10/case, respectively). Regarding the clinical outcome, as previously reported (Grossmann V. et Al. Blood 2013), alterations of TP53 were significantly associated with poor outcome in terms of both overall survival (median survival: 4 and 31 months in TP53 mutated and wild type patients, respectively; p 〈 0.0001) and relapse free-survival (RFS) (p 〈 0.0001). (Figure 1) Figure 1: Overall Survival curve of 172 AML patients with (red) or without (blue) TP53 mutations (p 〈 0.0001). Conclusions: Our data demonstrated that TP53 mutations are more frequent at diagnosis in the subgroup of complex karyotype AML (16.86%) (p 〈 0.0001–Fisher's exact test). They are mostly deleterious mutations and are significantly correlated with worst prognosis, fail to respond to therapy and rapidly progress. We recommend TP53 mutation screening at least in AML pts carrying either complex karyotype or chr. 8 gain. Supported by: ELN, AIL, AIRC, PRIN, progetto Regione-Universitˆ 2010-12 (L. Bolondi), FP7 NGS-PTL project. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...