GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Arteriosclerosis, Thrombosis, and Vascular Biology, Ovid Technologies (Wolters Kluwer Health), Vol. 38, No. Suppl_1 ( 2018-05)
    Abstract: Background: Terminal complications of bacterial sepsis include development of disseminated intravascular consumptive coagulopathy. Bacterial constituents, including long-chain polyphosphates (polyP), have been shown to activate the contact pathway of coagulation in plasma. Recent work shows that activation of the contact pathway in flowing whole blood can promote thrombin generation and platelet activation and consumption distal to thrombus formation ex vivo and in vivo . Aim: Determine whether presence of long-chain polyP in the bloodstream promotes platelet activation and consumption in a coagulation factor (F)XII-dependent manner. Methods/Results: The addition of long-chain polyP to human whole blood promoted platelet P-selectin expression, microaggregate formation and platelet consumption in the bloodstream under shear in a FXII-dependent manner. Moreover, long-chain polyP accelerated thrombus formation on immobilized collagen surfaces under shear flow in a thrombin generation-dependent manner. Distal to the site of thrombus formation, platelet consumption was dramatically enhanced in the presence of long-chain polyP in the bloodstream. Inhibiting contact activation of coagulation using established and novel agents reduced fibrin formation on collagen as well as platelet consumption in the bloodstream distal to the site of thrombus formation. In vivo , FXII deficiency was protective against long-chain polyP occlusive lung thrombus formation in mice. Lastly, in a non-human primate model of sepsis, pretreatment of animals with an antibody blocking FXI activation by FXIIa (14E11) diminished LD 100 S. aureus -induced platelet and fibrinogen consumption. Conclusions: This study demonstrates that bacterial-type long-chain polyP promotes FXII-mediated thrombin generation and platelet activation in the flowing blood and could contribute to sepsis-associated thrombotic processes, consumptive coagulopathy and thrombocytopenia.
    Type of Medium: Online Resource
    ISSN: 1079-5642 , 1524-4636
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2018
    detail.hit.zdb_id: 1221433-4
    detail.hit.zdb_id: 1494427-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Arteriosclerosis, Thrombosis, and Vascular Biology, Ovid Technologies (Wolters Kluwer Health), Vol. 38, No. Suppl_1 ( 2018-05)
    Abstract: Background: Terminal complications of bacterial sepsis include development of disseminated intravascular consumptive coagulopathy. Bacterial constituents, including long-chain polyphosphates (polyP), have been shown to activate the contact pathway of coagulation in plasma. Recent work shows that activation of the contact pathway in flowing whole blood can promote thrombin generation and platelet activation and consumption distal to thrombus formation ex vivo and in vivo . Aim: Determine whether presence of long-chain polyP in the bloodstream promotes platelet activation and consumption in a coagulation factor (F)XII-dependent manner. Methods/Results: The addition of long-chain polyP to human whole blood promoted platelet P-selectin expression, microaggregate formation and platelet consumption in the bloodstream under shear in a FXII-dependent manner. Moreover, long-chain polyP accelerated thrombus formation on immobilized collagen surfaces under shear flow in a thrombin generation-dependent manner. Distal to the site of thrombus formation, platelet consumption was dramatically enhanced in the presence of long-chain polyP in the bloodstream. Inhibiting contact activation of coagulation using established and novel agents reduced fibrin formation on collagen as well as platelet consumption in the bloodstream distal to the site of thrombus formation. In vivo , FXII deficiency was protective against long-chain polyP occlusive lung thrombus formation in mice. Lastly, in a non-human primate model of sepsis, pretreatment of animals with an antibody blocking FXI activation by FXIIa (14E11) diminished LD 100 S. aureus -induced platelet and fibrinogen consumption. Conclusions: This study demonstrates that bacterial-type long-chain polyP promotes FXII-mediated thrombin generation and platelet activation in the flowing blood and could contribute to sepsis-associated thrombotic processes, consumptive coagulopathy and thrombocytopenia.
    Type of Medium: Online Resource
    ISSN: 1079-5642 , 1524-4636
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2018
    detail.hit.zdb_id: 1221433-4
    detail.hit.zdb_id: 1494427-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Arteriosclerosis, Thrombosis, and Vascular Biology, Ovid Technologies (Wolters Kluwer Health), Vol. 37, No. suppl_1 ( 2017-05)
    Abstract: Background: Terminal complications of bacterial sepsis include development of consumptive coagulopathy referred to as disseminated intravascular coagulation. Bacterial constituents, including long-chain polyphosphates (polyP), have been shown to activate the contact pathway of coagulation in plasma. Recent work shows that activation of the contact pathway is capable of promoting thrombin generation and platelet activation and consumption in whole blood distal to thrombus formation under shear ex vivo and in vivo . Aim: Test the hypothesis that the presence of long-chain polyP in the bloodstream promotes platelet activation and consumption in a coagulation factor (F)XII-dependent manner. Methods and Results: Presence of long-chain polyP in whole blood promoted platelet aggregation on immobilized collagen surfaces under shear flow. Long-chain polyP enhanced fibrin formation and shortened clotting times of plasma and whole blood. The addition of long-chain polyP promoted platelet P-selectin expression, microaggregate formation and platelet consumption in the bloodstream under shear in a FXII-dependent manner. Moreover, long-chain polyP accelerated thrombus formation on immobilized collagen surfaces under shear flow. Distal to the sites of thrombus formation, platelet consumption was dramatically enhanced in the presence of long-chain polyP in the bloodstream. Inhibiting contact activation of the coagulation pathway reduced fibrin formation on collagen as well as platelet consumption in the bloodstream distal to the site of thrombus formation. Conclusions: This study demonstrates that bacterial-type long-chain polyP promotes FXII-mediated thrombin generation and platelet activation in the flowing blood and could exaggerate sepsis-associated thrombotic processes, consumptive coagulopathy and thrombocytopenia.
    Type of Medium: Online Resource
    ISSN: 1079-5642 , 1524-4636
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2017
    detail.hit.zdb_id: 1221433-4
    detail.hit.zdb_id: 1494427-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Arteriosclerosis, Thrombosis, and Vascular Biology, Ovid Technologies (Wolters Kluwer Health), Vol. 38, No. 8 ( 2018-08), p. 1748-1760
    Abstract: Terminal complications of bacterial sepsis include development of disseminated intravascular consumptive coagulopathy. Bacterial constituents, including long-chain polyphosphates (polyP), have been shown to activate the contact pathway of coagulation in plasma. Recent work shows that activation of the contact pathway in flowing whole blood promotes thrombin generation and platelet activation and consumption distal to thrombus formation ex vivo and in vivo. Here, we sought to determine whether presence of long-chain polyP or bacteria in the bloodstream promotes platelet activation and consumption in a coagulation factor (F)XII-dependent manner. Approach and Results— Long-chain polyP promoted platelet P-selectin expression, microaggregate formation, and platelet consumption in flowing whole blood in a contact activation pathway-dependent manner. Moreover, long-chain polyP promoted local fibrin formation on collagen under shear flow in a FXI-dependent manner. Distal to the site of thrombus formation, platelet consumption was dramatically enhanced in the presence of long-chain polyP in the blood flow in a FXI- and FXII-dependent manner. In a murine model, long-chain polyP promoted platelet deposition and fibrin generation in lungs in a FXII-dependent manner. In a nonhuman primate model of bacterial sepsis, pre-treatment of animals with an antibody blocking FXI activation by FXIIa reduced lethal dose 100 Staphylococcus aureus –induced platelet and fibrinogen consumption. Conclusions— This study demonstrates that bacterial-type long-chain polyP promotes platelet activation in a FXII-dependent manner in flowing blood, which may contribute to sepsis-associated thrombotic processes, consumptive coagulopathy, and thrombocytopenia.
    Type of Medium: Online Resource
    ISSN: 1079-5642 , 1524-4636
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2018
    detail.hit.zdb_id: 1221433-4
    detail.hit.zdb_id: 1494427-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: American Journal of Physiology-Cell Physiology, American Physiological Society, Vol. 322, No. 3 ( 2022-03-01), p. C370-C381
    Abstract: Cannabis usage has steadily increased as acceptance is growing for both medical and recreational reasons. Medical cannabis is administered for treatment of chronic pain based on the premise that the endocannabinoid system signals desensitize pain sensor neurons and produce anti-inflammatory effects. The major psychoactive ingredient of cannabis is Δ9-tetrahydrocannabinol (THC) that signals mainly through cannabinoid receptor-1 (CBr), which is also present on nonneuron cells including blood platelets of the circulatory system. In vitro, CBr-mediated signaling has been shown to acutely inhibit platelet activation downstream of the platelet collagen receptor glycoprotein (GP)VI. The systemic effects of chronic THC administration on platelet activity and function remain unclear. This study investigates the effects of chronic THC administration on platelet function using a nonhuman primate (NHP) model. Our results show that female and male NHPs consuming a daily THC edible had reduced platelet adhesion, aggregation, and granule secretion in response to select platelet agonists. Furthermore, a change in bioactive lipids (oxylipins) was observed in the female cohort after THC administration. These results indicate that chronic THC edible administration desensitized platelet activity and function in response to GPVI- and G-protein coupled receptor-based activation by interfering with primary and secondary feedback signaling pathways. These observations may have important clinical implications for patients who use medical marijuana and for providers caring for these patients.
    Type of Medium: Online Resource
    ISSN: 0363-6143 , 1522-1563
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2022
    detail.hit.zdb_id: 1477334-X
    detail.hit.zdb_id: 392098-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Platelets, Informa UK Limited, Vol. 33, No. 3 ( 2022-04-03), p. 404-415
    Type of Medium: Online Resource
    ISSN: 0953-7104 , 1369-1635
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2022
    detail.hit.zdb_id: 1034283-7
    detail.hit.zdb_id: 2008783-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2017
    In:  Arteriosclerosis, Thrombosis, and Vascular Biology Vol. 37, No. suppl_1 ( 2017-05)
    In: Arteriosclerosis, Thrombosis, and Vascular Biology, Ovid Technologies (Wolters Kluwer Health), Vol. 37, No. suppl_1 ( 2017-05)
    Abstract: Background: Under normal conditions, endothelial cells (ECs) govern blood flow dynamics including providing a barrier between blood and tissue and regulating platelet aggregation and thrombin generation in the bloodstream. In turn, blood components, primarily platelets and coagulation factors such as thrombin, regulate EC barrier integrity. The breakdown of EC barrier function is a hallmark of a variety of vascular diseases. In sepsis, for example, the dysfunction of vascular ECs has been correlated with poorer outcomes due to hemorrhage and multi-organ failure associated with consumption of platelets and coagulation factors into clots within the microcirculation, a condition termed disseminated intravascular coagulation (DIC). Aim: Develop an endothelialized flow chamber to study the platelet-endothelium interface. Methods and Results: We developed a 3D-chamber with a perfuseable cylindrical microvessel embedded in an extracellular matrix (ECM) material. This model allows for the study of the role of thrombin generation and platelet aggregation in endothelial barrier leak development and repair in healthy as well as inflamed microvessels. Incorporation of subendothelial matrix proteins in these 3D-microvessel devices expands the capacity of the microfluidic studies to investigate blood cell extravasation and enables the control of physical parameters such as transmural pressure and interstitial flow through the ECM. Conclusion: This model may provide insight into the pathophysiology of different disease states and serve as an expedient platform for therapy design and testing. The platelet-endothelium interface under shear flow. Diagram ( A ) and an experimental prototype ( B ) of a 3D-perfuseable device. Microvessel phenotype (following treatment with vehicle or 10 ng/mL TNFα) pre- and post- perfusion with recalcified whole blood for 33 min as visualized by differential interference contrast, DIC, ( C ) and fluorescence microscopy ( D ).
    Type of Medium: Online Resource
    ISSN: 1079-5642 , 1524-4636
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2017
    detail.hit.zdb_id: 1221433-4
    detail.hit.zdb_id: 1494427-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood Advances, American Society of Hematology, Vol. 7, No. 8 ( 2023-04-25), p. 1366-1378
    Abstract: Low-density lipoprotein (LDL) contributes to atherogenesis and cardiovascular disease through interactions with peripheral blood cells, especially platelets. However, mechanisms by which LDL affects platelet activation and atherothrombosis, and how to best therapeutically target and safely prevent such responses remain unclear. Here, we investigate how oxidized low-density lipoprotein (oxLDL) enhances glycoprotein VI (GPVI)-mediated platelet hemostatic and procoagulant responses, and how traditional and emerging antiplatelet therapies affect oxLDL-enhanced platelet procoagulant activity ex vivo. Human platelets were treated with oxLDL and the GPVI-specific agonist, crosslinked collagen-related peptide, and assayed for hemostatic and procoagulant responses in the presence of inhibitors of purinergic receptors (P2YR), cyclooxygenase (COX), and tyrosine kinases. Ex vivo, oxLDL enhanced GPVI-mediated platelet dense granule secretion, α-granule secretion, integrin activation, thromboxane generation and aggregation, as well as procoagulant phosphatidylserine exposure and fibrin generation. Studies of washed human platelets, as well as platelets from mouse and nonhuman primate models of hyperlipidemia, further determined that P2YR antagonists (eg, ticagrelor) and Bruton tyrosine kinase inhibitors (eg, ibrutinib) reduced oxLDL-mediated platelet responses and procoagulant activity, whereas COX inhibitors (eg, aspirin) had no significant effect. Together, our results demonstrate that oxLDL enhances GPVI-mediated platelet procoagulant activity in a manner that may be more effectively reduced by P2YR antagonists and tyrosine kinase inhibitors compared with COX inhibitors.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2023
    detail.hit.zdb_id: 2876449-3
    detail.hit.zdb_id: 2915908-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 12 ( 2021-8-30)
    Abstract: Circulating platelets establish a variety of immunological programs and orchestrate inflammatory responses at the endothelium. Platelets express the innate immunity family of Toll-like receptors (TLRs). While TLR2/TLR1 ligands are known to activate platelets, the effects of TLR2/TLR6 ligands on platelet function remain unclear. Here, we aim to determine whether the TLR2/TLR6 agonists Pam2CSK4 and FSL-1 activate human platelets. In addition, human umbilical vein endothelial cells (HUVECs) and platelets were co-cultured to analyze the role of platelet TLR2/TLR6 on inflammation and adhesion to endothelial cells. Pam2CSK4, but not FSL-1, induced platelet granule secretion and integrin α IIb β 3 activation in a concentration-dependent manner. Moreover, Pam2CSK4 promoted platelet aggregation and increased platelet adhesion to collagen-coated surfaces. Mechanistic studies with blocking antibodies and pharmacologic inhibitors demonstrated that the TLR2/Nuclear factor-κB axis, Bruton’s-tyrosine kinase, and a secondary ADP feedback loop are involved in Pam2CSK4-induced platelet functional responses. Interestingly, Pam2CSK4 showed cooperation with immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling to enhance platelet activation. Finally, the presence of platelets increased inflammatory responses in HUVECs treated with Pam2CSK4, and platelets challenged with Pam2CSK4 showed increased adhesion to HUVECs under static and physiologically relevant flow conditions. Herein, we define a functional role for platelet TLR2-mediated signaling, which may represent a druggable target to dampen excessive platelet activation in thrombo-inflammatory diseases.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Thrombosis and Haemostasis, Elsevier BV, Vol. 21, No. 3 ( 2023-03), p. 467-479
    Type of Medium: Online Resource
    ISSN: 1538-7836
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2099291-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...