GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 92, No. 11 ( 1998-12-01), p. 4248-4255
    Abstract: In the current study, we investigated whether the naive, poly I:C or interleukin-2 (IL-2)–induced natural killer (NK)/lymphokine-activated killer (LAK) cells use perforin and/or Fas ligand (FasL) to mediated cytotoxicity. We correlated these findings with the ability of mice to reject syngeneic Fas+ and Fas− tumor cells either spontaneously or after IL-2 treatment. The spontaneous NK-cell–mediated cytotoxicity was primarily perforin based, whereas the poly I:C and IL-2–induced NK/LAK activity was both FasL and perforin dependent. L1210 Fas+ tumor targets were more sensitive than L1210 Fas− targets to poly I:C and IL-2–induced cytotoxicity in wild-type, gld/gld, and perforin knockout mice. When L1210 Fas+ and Fas– tumor cells were injected subcutaneously (sc) or intraperitoneally into syngeneic mice, Fas− tumor cells caused mortality earlier than Fas+ tumor cells. Also, approximately 20% of the mice injected sc with L1210 Fas+ tumor cells survived the challenge( & gt;60 days), whereas all mice injected similarly with L1210 Fas− tumor cells died. When immunotherapy using IL-2 (10,000 U, three times/d for a week, followed by once/d for an additional week) was attempted in mice injected sc with tumor cells, IL-2 treatment was very effective against mice bearing L1210 Fas+ (40% survival) but not L1210 Fas− (0% survival) tumors. These data correlated with the finding that the LAK cells from IL-2–injected mice caused increased cytotoxicity against L1210 Fas+ when compared with L1210 Fas− targets. Also, L1210 Fas+tumor-bearing mice showed increased tumor-specific cytotoxic T lymphocyte (CTL) activity when compared with those bearing L1210 Fas− tumor cells. Together our studies show for the first time that expression of Fas on tumor targets makes them more immunogenic as well as susceptible to CTL- and IL-2–induced LAK activity. The Fas+ tumor cells are also more responsive to immunotherapy with IL-2.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 1998
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 163, No. 3 ( 1999-08-01), p. 1619-1627
    Abstract: At sites of chronic inflammation seen during infections, autoimmunity, graft-vs-host response, and cytokine therapy, endothelial cell injury is known to occur, the exact mechanism of which is unknown. In the current study we used IL-2-induced vascular leak syndrome (VLS) as a model to investigate whether cytotoxic lymphocytes use CD44 in mediating endothelial cell injury. Administration of IL-2 to wild-type mice triggered significant VLS in the lungs and liver. In contrast, in CD44 knockout (KO) mice, IL-2-induced VLS was markedly reduced in the lungs and liver. IL-2-treated wild-type and CD44 KO mice had similar levels of perivascular infiltration with lymphocytes in the lungs and liver. This suggested that the decrease in VLS seen in CD44 KO mice was not due to the inability of lymphocytes to migrate to these organs. Ultrastructural studies demonstrated extensive endothelial cell damage in the lungs and liver of IL-2-treated wild-type, but not CD44 KO, mice. Moreover, CD44-KO mice exhibited a marked decrease in IL-2-induced lymphokine-activated killer cell activity. The induction of VLS was dependent on the expression of CD44 on immune cells rather than endothelial cells because adoptive transfer of CD44+, but not CD44− spleen cells along with IL-2 into CD44 KO mice triggered VLS. The IL-2-induced VLS was blocked by administration of F(ab′)2 of Abs against CD44. The current study demonstrates that CD44 plays a key role in endothelial cell injury. Blocking CD44 in vivo may offer a novel therapeutic approach to prevent endothelial cell injury by cytotoxic lymphocytes in a variety of clinical disease models.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 1999
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Experimental Parasitology, Elsevier BV, Vol. 101, No. 1 ( 2002-5), p. 3-12
    Type of Medium: Online Resource
    ISSN: 0014-4894
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2002
    detail.hit.zdb_id: 1466937-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 92, No. 11 ( 1998-12-01), p. 4248-4255
    Abstract: In the current study, we investigated whether the naive, poly I:C or interleukin-2 (IL-2)–induced natural killer (NK)/lymphokine-activated killer (LAK) cells use perforin and/or Fas ligand (FasL) to mediated cytotoxicity. We correlated these findings with the ability of mice to reject syngeneic Fas+ and Fas− tumor cells either spontaneously or after IL-2 treatment. The spontaneous NK-cell–mediated cytotoxicity was primarily perforin based, whereas the poly I:C and IL-2–induced NK/LAK activity was both FasL and perforin dependent. L1210 Fas+ tumor targets were more sensitive than L1210 Fas− targets to poly I:C and IL-2–induced cytotoxicity in wild-type, gld/gld, and perforin knockout mice. When L1210 Fas+ and Fas– tumor cells were injected subcutaneously (sc) or intraperitoneally into syngeneic mice, Fas− tumor cells caused mortality earlier than Fas+ tumor cells. Also, approximately 20% of the mice injected sc with L1210 Fas+ tumor cells survived the challenge( 〉 60 days), whereas all mice injected similarly with L1210 Fas− tumor cells died. When immunotherapy using IL-2 (10,000 U, three times/d for a week, followed by once/d for an additional week) was attempted in mice injected sc with tumor cells, IL-2 treatment was very effective against mice bearing L1210 Fas+ (40% survival) but not L1210 Fas− (0% survival) tumors. These data correlated with the finding that the LAK cells from IL-2–injected mice caused increased cytotoxicity against L1210 Fas+ when compared with L1210 Fas− targets. Also, L1210 Fas+tumor-bearing mice showed increased tumor-specific cytotoxic T lymphocyte (CTL) activity when compared with those bearing L1210 Fas− tumor cells. Together our studies show for the first time that expression of Fas on tumor targets makes them more immunogenic as well as susceptible to CTL- and IL-2–induced LAK activity. The Fas+ tumor cells are also more responsive to immunotherapy with IL-2.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 1998
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...