GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Monthly Weather Review Vol. 151, No. 10 ( 2023-10), p. 2683-2699
    In: Monthly Weather Review, American Meteorological Society, Vol. 151, No. 10 ( 2023-10), p. 2683-2699
    Abstract: Tropical cyclones that intensify abruptly experience “rapid intensification.” Rapid intensification remains a formidable forecast challenge, in part because the underlying science has not been settled. One way to reconcile the debates and inconsistencies in the literature is to presume that different forms (or modes) of rapid intensification exist. The present study provides evidence in support of this hypothesis by documenting two modes of rapid intensification in a global convection-permitting simulation and the HURDAT2 database. The “marathon mode” is characterized by a moderately paced and long-lived intensification period, whereas the “sprint mode” is characterized by explosive and short-lived intensification bursts. Differences between the modes were also found in initial vortex structure (well defined versus poorly defined), nature of intensification (symmetric versus asymmetric), and environmental conditions (weak shear versus strong shear). Collectively, these differences indicate that the two modes involve distinct intensification mechanisms. Recognizing the existence of multiple intensification modes may help to better understand and predict rapid intensification by, for example, explaining the lack of consensus in the literature, or by raising awareness that rapid intensification in strongly sheared cyclones is not just an exception to a rule, but a typical process. Significance Statement Hurricanes are serious threats to society—in particular those that suddenly and quickly intensify before striking land. Forecasting these “rapid intensification” events is a challenge, in part because we do not fully understand the science behind rapid intensification. This study furthers our understanding of hurricane rapid intensification by documenting that rapid intensification comes in different types. Specifically, we show that one type of rapid intensification happens under conditions that meteorologists have thought would lessen the chances of intensification. Awareness of such a type of rapid intensification could lead to better predictions of hurricane intensity because forecasters are more cognizant of this type of event and the conditions in which they occur.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of the Atmospheric Sciences ( 2021-09-21)
    In: Journal of the Atmospheric Sciences, American Meteorological Society, ( 2021-09-21)
    Abstract: This study describes a set of idealized simulations in which westerly vertical wind shear increases from 3 to 15 m s −1 at different stages in the lifecycle of an intensifying tropical cyclone (TC). The TC response to increasing shear depends on the intensity and size of the TC’s tangential wind field when shear starts to increase. For a weak tropical storm, increasing shear decouples the vortex and prevents intensification. For Category 1 and stronger storms, increasing shear causes a period of weakening during which vortex tilt increases by 10–30 km before the TCs reach a near-steady Category 1–3 intensity at the end of the simulations. TCs exposed to increasing shear during or just after rapid intensification tend to weaken the most. Backward trajectories reveal a lateral ventilation pathway between 8–11 km altitude that is capable of reducing equivalent potential temperature in the inner core of these TCs by nearly 2°C. In addition, these TCs exhibit large reductions in diabatic heating inside the radius of maximum winds (RMW) and lower-entropy air parcels entering downshear updrafts from the boundary layer, which further contributes to their substantial weakening. The TCs exposed to increasing shear after rapid intensification and an expansion of the outer wind field reach the strongest near-steady intensity long after the shear increases because of strong vertical coupling that prevents the development of large vortex tilt, resistance to lateral ventilation through a deep layer of the middle troposphere, and robust diabatic heating within the RMW.
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Journal of the Atmospheric Sciences Vol. 73, No. 11 ( 2016-11-01), p. 4269-4287
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 73, No. 11 ( 2016-11-01), p. 4269-4287
    Abstract: The sensitivity of tropical cyclone spinup time to the initial entropy deficit of the troposphere is examined in an axisymmetric hurricane model. Larger initial entropy deficits correspond to less moisture above the initial lifting condensation level of a subcloud-layer parcel. The spinup time is quantified in terms of thresholds of integrated horizontal kinetic energy within a radius of 300 km and below a height of 1.5 km. The spinup time increases sublinearly with increasing entropy deficit, indicating the greatest sensitivity lies with initial moisture profiles closer to saturation. As the moisture profile approaches saturation, there is a large increase in the low-level, area-averaged, vertical mass flux over the spinup period because of the predominance of deep convection. Higher entropy deficit experiments have a greater amount of cumulus congestus and reduced vertical mass flux over a longer duration. Consequently, the secondary circulation takes longer to build upward, and the radial influx of angular momentum is reduced. There is also a reduction in the conversion of potential available enthalpy to horizontal kinetic energy, as a result of reduced flow down the radial pressure gradient early in the spinup period. Later in the spinup period, the low-level vortex spins up relatively quickly near the nascent radius of maximum wind in the high-entropy deficit experiments, whereas the low-level vortex spins up over a wider area in the low-entropy deficit experiments.
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Journal of the Atmospheric Sciences Vol. 73, No. 4 ( 2016-04-01), p. 1555-1575
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 73, No. 4 ( 2016-04-01), p. 1555-1575
    Abstract: The mechanisms leading to tropical cyclone (TC) intensification amid moderate vertical wind shear can vary from case to case, depending on the vortex structure and the large-scale conditions. To search for similarities between cases, this second part investigates the rapid intensification of Hurricane Ophelia (2011) in an environment characterized by 200–850-hPa westerly shear exceeding 8 m s−1. Similar to Part I, a 96-member ensemble was employed to compare a subset of members that predicted Ophelia would intensify with another subset that predicted Ophelia would weaken. This comparison revealed that the intensification of Ophelia was aided by enhanced convection and midtropospheric moisture in the downshear and left-of-shear quadrants. Enhanced left-of-shear convection was key to the establishment of an anticyclonic divergent outflow that forced a nearby upper-tropospheric trough to wrap around Ophelia. A vorticity budget showed that deep convection also contributed to the enhancement of vorticity within the inner core of Ophelia via vortex stretching and tilting of horizontal vorticity enhanced by the upper-tropospheric trough. These results suggest that TC intensity changes in sheared environments and in the presence of upper-tropospheric troughs highly depend on the interaction between convective-scale processes and the large-scale flow. Given the similarities between Part I and this part, the results suggest that observations from the three-dimensional moisture and wind fields could improve both forecasting and understanding of TC intensification in moderately sheared environments.
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Journal of Climate Vol. 36, No. 9 ( 2023-05-01), p. 2895-2915
    In: Journal of Climate, American Meteorological Society, Vol. 36, No. 9 ( 2023-05-01), p. 2895-2915
    Abstract: Accurate simulations of convectively coupled equatorial waves (CCEWs) are key to properly forecasting rainfall and weather patterns within (and outside) the tropics. Many studies have shown that global numerical weather prediction (NWP) models usually do not accurately simulate CCEWs; however, it is unclear if this problem can be alleviated with a better representation of deep convection in the models. To this end, this study investigates the representation of multiple types of CCEWs in the Model for Prediction Across Scales-Atmosphere (MPAS-A). The simulated structure of CCEWs is analyzed from three MPAS-A aquaplanet experiments with horizontal cell spacing of 30, 15, and 3 km, respectively. Using a wave-phase composite technique, the simulated structure is compared against observed CCEWs as represented by satellite and reanalysis data. All aquaplanet experiments capture the overall structure of gravity wave–type equatorial waves (e.g., Kelvin waves and inertio-gravity waves). Those waves are more realistic in the 3-km experiment, particularly in terms of the vertical structure of temperature, water vapor, and wind anomalies associated with the waves. The main reason for this improvement is a more realistic diabatic heating profile; the experiment with resolved convection produces stronger heating (or weaker cooling) below the melting level during the convectively active phase of Kelvin and inertio-gravity waves. Intriguingly, the rainfall and lower-tropospheric structure associated with easterly waves show pronounced discrepancies between the aquaplanet experiments and reanalysis. Resolved deep convection primarily affects the intensity and propagation speeds of these waves.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2012
    In:  Theoretical and Applied Climatology Vol. 107, No. 1-2 ( 2012-1), p. 297-311
    In: Theoretical and Applied Climatology, Springer Science and Business Media LLC, Vol. 107, No. 1-2 ( 2012-1), p. 297-311
    Type of Medium: Online Resource
    ISSN: 0177-798X , 1434-4483
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 1463177-5
    detail.hit.zdb_id: 405799-5
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Journal of the Atmospheric Sciences Vol. 73, No. 1 ( 2016-01-01), p. 71-93
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 73, No. 1 ( 2016-01-01), p. 71-93
    Abstract: The mechanisms responsible for tropical cyclone (TC) intensification in the presence of moderate vertical shear magnitudes are not well understood. To investigate how TCs intensify in spite of moderate shear, this study employed a 96-member ensemble generated with the Advanced Hurricane Weather Research and Forecasting (AHW) Model. In this first part, AHW ensemble forecasts for TC Katia (2011) were evaluated when Katia was a weak tropical storm in an environment of 12 m s−1 easterly shear. The 5-day AHW forecasts for Katia were characterized by large variability in the intensity, presenting an opportunity to compare the underlying mechanisms between two subsets of members that predicted different intensity scenarios: intensification and weakening. The key difference between these two subsets was found in the lower-tropospheric moisture north of Katia (i.e., right-of-shear quadrant). With more water vapor in the lower troposphere, buoyant updrafts helped to moisten the midtroposphere and enhanced the likelihood of deep and organized convection in the subset that predicted intensification. This finding was validated with a vorticity budget, which showed that deep cyclonic vortex stretching and tilting contributed to spinning up the circulation after the midtroposphere had moistened. Sensitivity experiments, in which the initial conditions were perturbed, also demonstrated the importance of lower-tropospheric moisture, which suggests that moisture observations may help reduce uncertainty in forecasts of weak, sheared tropical storms.
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2018
    In:  Journal of the Atmospheric Sciences Vol. 75, No. 12 ( 2018-12-01), p. 4149-4173
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 75, No. 12 ( 2018-12-01), p. 4149-4173
    Abstract: A major open issue in tropical meteorology is how and why some tropical cyclones intensify under moderate vertical wind shear. This study tackles that issue by diagnosing physical processes of tropical cyclone intensification in a moderately sheared environment using a 20-member ensemble of idealized simulations. Consistent with previous studies, the ensemble shows that the onset of intensification largely depends on the timing of vortex tilt reduction and symmetrization of precipitation. A new contribution of this work is a process-based analysis following a shear-induced midtropospheric vortex with its associated precipitation. This analysis shows that tilt reduction and symmetrization precede intensification because those processes are associated with a substantial increase in near-surface vertical mass fluxes and equivalent potential temperature. A vorticity budget demonstrates that the increased near-surface vertical mass fluxes aid intensification via near-surface stretching of absolute vorticity and free-tropospheric tilting of horizontal vorticity. Importantly, tilt reduction happens because of a vortex merger process—not because of advective vortex alignment—that yields a single closed circulation over a deep layer. Vortex merger only happens after the midtropospheric vortex reaches upshear left, where the flow configuration favors near-surface vortex stretching, deep updrafts, and a substantial reduction of low-entropy fluxes. These results lead to the hypothesis that intensification under moderate shear happens if and when a “restructuring” process is completed, after which a closed circulation favors persistent vorticity spinup and recirculating warm, moist air parcels.
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 1 ( 2023-01), p. E305-E324
    Abstract: The diurnal cycle of coastal rainfall over western Puerto Rico was studied with high-frequency radiosondes launched by undergraduate students at the University of Puerto Rico at Mayagüez (UPRM). Thirty radiosondes were launched during a 3-week period as part of NASA’s Convective Processes Experiment—Aerosols and Winds (CPEX-AW) field project. The objective of the radiosonde launches over Puerto Rico was to understand the evolution of coastal convective systems that are often challenging to predict. Four different events were sampled: 1) a short-lived rainfall event during a Saharan air dust outbreak, 2) a 2-day period of limited rainfall activity under northeasterly wind conditions, 3) a 2-day period of heavy rainfall over land, and 4) a 2-day period of long-lived rainfall events that initiated over land and propagated offshore during the evening hours. The radiosondes captured the sea-breeze onset during the midmorning hours, an erosion of lower-tropospheric inversions, and substantial differences in column humidity between the four events. All radiosondes were launched by volunteer undergraduate students who were able to participate in person, while the coordination was done virtually with lead scientists located in Puerto Rico, Oklahoma, and Saint Croix. Overall, this initiative highlighted the importance of student–scientist collaboration in collecting critical observations to better understand complex atmospheric processes.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Monthly Weather Review Vol. 142, No. 1 ( 2014-01-01), p. 72-78
    In: Monthly Weather Review, American Meteorological Society, Vol. 142, No. 1 ( 2014-01-01), p. 72-78
    Abstract: Quantifying and reducing the uncertainty of model parameterizations using observations is evaluated for tropical cyclone (TC) intensity prediction. This is accomplished using a nonlinear inverse modeling technique that produces a joint probability density function (PDF) for a set of parameters. The dependence of estimated parameter values and associated uncertainty on two types of observable quantities is analyzed using an axisymmetric hurricane model. When the observation is only the maximum tangential wind speed, the joint PDF of parameter estimates has large variance and is multimodal. When the full kinematic field within the inner core of the TC is used for the observations, however, the joint parameter estimates are well constrained. These results suggest that model parameterizations may not be optimized using the maximum wind speed. Instead, the optimization should be based on observations of the TC structure to improve the intensity forecasts.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...