GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: American Journal of Hematology, Wiley, Vol. 97, No. 6 ( 2022-06), p. 700-710
    Abstract: Loss and/or mutation of the TP53 gene are associated with short survival in multiple myeloma, but the p53 landscape goes far beyond. At least 12 p53 protein isoforms have been identified as a result of a combination of alternative splicing, alternative promoters and/or alternative transcription site starts, which are grouped as α, β, γ, from transactivation domain (TA), long, and short isoforms. Nowadays, there are no studies evaluating the expression of p53 isoforms and its clinical relevance in multiple myeloma (MM). We used capillary nanoimmunoassay to quantify the expression of p53 protein isoforms in CD138‐purified samples from 156 patients with newly diagnosed MM who were treated as part of the PETHEMA/GEM2012 clinical trial and investigated their prognostic impact. Quantitative real‐time polymerase chain reaction was used to corroborate the results at RNA levels. Low and high levels of expression of short and TAp53β/γ isoforms, respectively, were associated with adverse prognosis in MM patients. Multivariate Cox models identified high levels of TAp53β/γ (hazard ratio [HR], 4.49; p   〈  .001) and high‐risk cytogenetics (HR, 2.69; p   〈  .001) as independent prognostic factors associated with shorter time to progression. The current cytogenetic‐risk classification was notably improved when expression levels of p53 protein isoforms were incorporated, whereby high‐risk MM expressing high levels of short isoforms had significantly longer survival than high‐risk patients with low levels of these isoforms. This is the first study that demonstrates the prognostic value of p53 isoforms in MM patients, providing new insights on the role of p53 protein dysregulation in MM biology.
    Type of Medium: Online Resource
    ISSN: 0361-8609 , 1096-8652
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 1492749-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 20, No. 6 ( 2014-03-15), p. 1542-1554
    Abstract: Purpose: MLN9708 (ixazomib citrate), which hydrolyzes to pharmacologically active MLN2238 (ixazomib), is a next-generation proteasome inhibitor with demonstrated preclinical and clinical antimyeloma activity, but yet with an unknown effect on myeloma bone disease. Here, we investigated its bone anabolic and antiresorptive effects in the myeloma setting and in comparison with bortezomib in preclinical models. Experimental Design: The in vitro effect of MLN2238 was tested on osteoclasts and osteoclast precursors from healthy donors and patients with myeloma, and on osteoprogenitors derived from bone marrow mesenchymal stem cells also from both origins. We used an in vivo model of bone marrow–disseminated human myeloma to evaluate MLN2238 antimyeloma and bone activities. Results: Clinically achievable concentrations of MLN2238 markedly inhibited in vitro osteoclastogenesis and osteoclast resorption; these effects involved blockade of RANKL (receptor activator of NF-κB ligand)-induced NF-κB activation, F-actin ring disruption, and diminished expression of αVβ3 integrin. A similar range of MLN2238 concentrations promoted in vitro osteoblastogenesis and osteoblast activity (even in osteoprogenitors from patients with myeloma), partly mediated by activation of TCF/β-catenin signaling and upregulation of the IRE1 component of the unfolded protein response. In a mouse model of bone marrow–disseminated human multiple myeloma, orally administered MLN2238 was equally effective as bortezomib to control tumor burden and also provided a marked benefit in associated bone disease (sustained by both bone anabolic and anticatabolic activities). Conclusion: Given favorable data on pharmacologic properties and emerging clinical safety profile of MLN9708, it is conceivable that this proteasome inhibitor may achieve bone beneficial effects in addition to its antimyeloma activity in patients with myeloma. Clin Cancer Res; 20(6); 1542–54. ©2014 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Hematology & Oncology, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2017-12)
    Type of Medium: Online Resource
    ISSN: 1756-8722
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2429631-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 2001-2001
    Abstract: CCND2 is highly expressed in most of multiple myeloma (MM) samples without CCND1 or CCND3 overexpression. D-type cyclins are highly homologous proteins and there is a growing body of evidence that the functions of the D cyclins are mostly exchangeable. During mouse development, the three D-type cyclins are expressed following an often mutually exclusive pattern and their function may be tissue-specific. Likewise in MM CCND1 or CCND2 expression is commonly mutually exclusive. The mechanisms by which CCND2 is upregulated in a set of MMs are not completely deciphered. In this study, we investigated the role of post-transcriptional regulation through the interaction between miRNAs and their binding sites at3'UTR in CCND2 overexpression in MM. First, we observed that ectopic transfection of MM cell lines with several miRNAs, directly targeting CCND2 3'UTR according to luciferase reporter assay, decreased the level of cyclin D2, although not in all the cell lines. This fact suggested the possible disruption of miRNA target sites. Indeed, we detected the presence of short CCND2 mRNA, both in MM cell lines and primary cells, using four different methodological approaches: qRT-PCR, Northern blot, mRNA FISH and 3’RACE PCR with product sequencing. The short CCND2 isoform was observed by qRT-PCR in the majority of patients and in all MM cell lines expressing CCND2. This finding was confirmed by Northern blot results. The abundance of each CCND2 mRNA isoform was also assessed by two-color mRNA FISH designed to discriminate the two mRNA different in length. This approach also enabled us to notice that no subpopulation of cells distinguishable by the load of one isoform with respect to another was present. The results obtained by RACE experiments in MM cell lines support the idea that changes in CCND2 3’UTR length are explained by alternative polyadenylation (APA). The functional consequences of 3’UTR shortening is the mRNA stabilization due to the loss of miRNA sites and regulatory elements located in the 3’UTR. Accordingly, the luciferase assays using plasmids harboring the truncated CCND2 mRNA strongly confirmed the loss of miRNA sites in the shorter CCND2 mRNA isoform. The short 3’UTRs lacking miRNA-binding sites have been associated with increased expression of different genes at both the mRNA and the protein level. Here, we observed significant higher level of overall CCND2 mRNA expression in those MMs with greater abundance of the shorter 3'UTR isoform. The previous intriguing observation showing that the level of cyclin D2 increased in U266 when cyclin D1 was silenced, was confirmed by our experiments. Moreover, functional analysis showed significant mRNA shortening after CCND1 silencing, suggesting that cyclin D1 could downregulate CCND2 level by modification of polyadenylation/clavage reaction. Since CCND2 expression is undetectable in myeloma cells with t(11;14), we extended our investigation to explore if DNA methylation might play a role in abolishing CCND2 expression. We observed that the CpG island more proximal to CCND2 TSS was highly methylated in MM cell lines with t(11;14). In summary, our results reveal that CCND2 expression in MM is mainly regulated by post-transcriptional mechanisms. Downregulation of specific miRNAs directly targeting CCND2 contributes to overexpression of CCND2 in a set of MM. Moreover, the shortening of CCND2 3'UTR by alternative polyadenylation with the consequent loss of miRNA binding sites is also participating in CCND2 upregulation. In fact, this mechanism seems to play a decisive role in the regulatory network between CCND1 and CCND2 in MM. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Experimental Hematology & Oncology, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2022-12)
    Abstract: IRE1 is an unfolded protein response (UPR) sensor with kinase and endonuclease activity. It plays a central role in the endoplasmic reticulum (ER) stress response through unconventional splicing of XBP1 mRNA and regulated IRE1-dependent decay (RIDD). Multiple myeloma (MM) cells are known to exhibit an elevated level of baseline ER stress due to immunoglobulin production, however RIDD activity has not been well studied in this disease. In this study, we aimed to investigate the potential of RNA-sequencing in the identification of novel RIDD targets in MM cells and to analyze the role of these targets in MM cells. Methods In vitro IRE1-cleavage assay was combined with RNA sequencing. The expression level of RIDD targets in MM cell lines was measured by real-time RT-PCR and Western blot. Results Bioinformatic analysis revealed hundreds of putative IRE1 substrates in the in vitro assay, 32 of which were chosen for further validation. Looking into the secondary structure of IRE1 substrates, we found that the consensus sequences of IRF4 , PRDM1 , IKZF1 , KLF13 , NOTCH1 , ATR , DICER , RICTOR , CDK12 , FAM168B, and CENPF mRNAs were accompanied by a stem-loop structure essential for IRE1-mediated cleavage. In fact, we show that mRNA and protein levels corresponding to these targets were attenuated in an IRE1-dependent manner by treatment with ER-stress-inducing agents. In addition, a synergistic effect between IMiDs and ER-stress inducers was found. Conclusion This study, using RNA sequencing, shows that IRE1 RNase has a broad range of mRNA substrates in myeloma cells and demonstrates for the first time that IRE1 is a key regulator of several proteins of importance in MM survival and proliferation.
    Type of Medium: Online Resource
    ISSN: 2162-3619
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2669066-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cells, MDPI AG, Vol. 10, No. 3 ( 2021-03-04), p. 559-
    Abstract: BH3-mimetics targeting anti-apoptotic proteins such as MCL-1 (S63845) or BCL-2 (venetoclax) are currently being evaluated as effective therapies for the treatment of multiple myeloma (MM). Interleukin 6, produced by mesenchymal stromal cells (MSCs), has been shown to modify the expression of anti-apoptotic proteins and their interaction with the pro-apoptotic BIM protein in MM cells. In this study, we assess the efficacy of S63845 and venetoclax in MM cells in direct co-culture with MSCs derived from MM patients (pMSCs) to identify additional mechanisms involved in the stroma-induced resistance to these agents. MicroRNAs miR-193b-3p and miR-21-5p emerged among the top deregulated miRNAs in myeloma cells when directly co-cultured with pMSCs, and we show their contribution to changes in MCL-1 and BCL-2 protein expression and in the activity of S63845 and venetoclax. Additionally, direct contact with pMSCs under S63845 and/or venetoclax treatment modifies myeloma cell dependence on different BCL-2 family anti-apoptotic proteins in relation to BIM, making myeloma cells more dependent on the non-targeted anti-apoptotic protein or BCL-XL. Finally, we show a potent effect of the combination of S63845 and venetoclax even in the presence of pMSCs, which supports this combinatorial approach for the treatment of MM.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: BMC Cancer, Springer Science and Business Media LLC, Vol. 15, No. 1 ( 2015-12)
    Type of Medium: Online Resource
    ISSN: 1471-2407
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 2041352-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Non-Coding RNA, MDPI AG, Vol. 5, No. 1 ( 2019-01-16), p. 9-
    Abstract: Intensive research has been undertaken during the last decade to identify the implication of microRNAs (miRNAs) in the pathogenesis of multiple myeloma (MM). The expression profiling of miRNAs in MM has provided relevant information, demonstrating different patterns of miRNA expression depending on the genetic abnormalities of MM and a key role of some miRNAs regulating critical genes associated with MM pathogenesis. However, the underlying causes of abnormal expression of miRNAs in myeloma cells remain mainly elusive. The final expression of the mature miRNAs is subject to multiple regulation mechanisms, such as copy number alterations, CpG methylation or transcription factors, together with impairment in miRNA biogenesis and differences in availability of the mRNA target sequence. In this review, we summarize the available knowledge about the factors involved in the regulation of miRNA expression and functionality in MM.
    Type of Medium: Online Resource
    ISSN: 2311-553X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2813993-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Haematologica, Ferrata Storti Foundation (Haematologica), ( 2023-08-31)
    Abstract: Upregulation of a cyclin D gene determined by expression microarrays is an almost universal event in multiple myeloma (MM), but this finding has not been properly confirmed at the protein level. For this reason, we carried out a quantitative analysis of cyclin D proteins using a capillary electrophoresis nanoimmunoassay in newly diagnosed MM patients. Exclusive expression of cyclin D1 and D2 proteins was detected in 54/165 (33%) and 30/165 (18%) of the MM patients, respectively. Of note, cyclin D1 or D2 proteins were undetectable in 41% of the samples. High levels of cyclin D1 protein were strongly associated with the presence of t(11;14) or 11q gains. Cyclin D2 protein was detected in all the cases bearing t(14;16), but in only 24% of patients with t(4;14). The presence of cyclin D2 was associated with shorter OS (HR=2.14, p=0.017), although patients expressing cyclin D2 protein, but without 1q gains, had a favorable prognosis. In conclusion, although one of the cyclins D is overexpressed at the mRNA level in almost all MM patients, in approximately half of the patients this does not translate into detectable protein. This suggests that cyclins D could not play an oncogenic role in a proportion of patients with MM.
    Type of Medium: Online Resource
    ISSN: 1592-8721 , 0390-6078
    Language: Unknown
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2023
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 4014-4014
    Abstract: Abstract 4014 Introduction: Bone destruction, a hallmark of multiple myeloma (MM), arises as a consequence of the interactions between MM cells and the bone marrow microenvironment, which lead to an increase in the bone-resorptive activity and number of osteoclasts (OC) and a reduction of the bone-forming activity and differentiation of osteoblasts (OB). MLN9708, which hydrolyzes to pharmacologically active MLN2238 in aqueous solution, is an investigational proteasome inhibitor (PI) with demonstrated preclinical anti-myeloma activity. However, it is currently not known whether MLN9708, may have a beneficial effect on myeloma-associated bone disease. Here, we have conducted in vitro and in vivo studies to evaluate its ability to promote osteogenic differentiation and to inhibit OC formation and function in the myeloma setting. Patient samples, material and methods: The human MM cell lines RPMI-8226 and MM.1S (or RPMI-8226-luc and MM.1S-luc) together with the mesenchymal stem hMSC-TERT cell line were employed. Also, MSCs from BM samples of healthy donors and MM patients were used in OB differentiation studies, whereas PBMCs from healthy volunteers were used to generate OCs. NOD.SCID.IL2Rγ−/− mice were used in the in vivo model of disseminated human MM. MLN2238 and bortezomib (Velcade) were provided by Millennium Pharmaceuticals, Inc. OB differentiation from MSCs and OB function were investigated by measurement of ALP activity, quantitative mineralization, luciferase reporter assays, siRNA gene silencing and real time RT-PCR. The effect of the new PI on OC formation was assessed by enumeration of multinucleated (≥3) TRAP-positive cells. Measurement of resorbed area, immunofluorescence and flow cytometry were used to further investigate the effect of MLN2238 on OC function. In our in vivo model, bioluminescence imaging, micro-CT analysis and serum levels of Igλ and bone markers were determined. Results: Physiologic concentrations of MLN2238 were able to stimulate the osteogenic differentiation of MSCs from both myeloma patients and healthy donors in vitro to an extent comparable to bortezomib; this was assessed by increased levels of ALP activity, higher expression of bone formation markers (Runx2, osterix, osteopontin and osteocalcin) and augmented matrix mineralization. The enhanced OB formation and function induced by MLN2238 was at least partly due to induction of T-cell factor 4 (TCF4) transcriptional activity, as well as to activation of the unfolded protein response. A similar range of MLN2238 doses also markedly inhibited OC formation and resorption from human progenitors. Similarly to that described with bortezomib, MLN2238 treatment of human pre-OCs prevented RANKL-induced NF-κB activation, disrupted the integrity of the F-actin ring and also reduced the expression of the αVβ3 integrin, thus contributing to inhibition of OC function. MLN2238 was also able to overcome the growth advantage conferred to MM.1S-luc cells by co-culture with MSCs or OCs. Oral administration of MLN2238 in a mouse model of disseminated human MM decreased human RPMI-8226-luc tumor burden as assessed by diminished bioluminescence signal and decreased serum levels of Igλ secreted by RPMI-8226-luc cells. In addition, MLN2238 prevented tumor-associated bone loss with significant increases in femoral trabecular bone parameters as compared to vehicle control animals. Serum markers of bone turnover showed that MLN2238 inhibited bone resorption (decreased levels of CTX) while enhancing bone formation (increased levels of P1NP). Conclusion: MLN2238 in vitro was capable of promoting osteoblastogenesis and OB activity as well as of inhibiting OC formation and function to an extent similar to bortezomib. In a disseminated human MM mouse model, orally administered MLN2238 showed anti-resorptive and bone-anabolic effects in addition to its anti-tumor properties. Given the thus far available data on the preclinical safety and favorable pharmacologic properties of MLN2238, it is conceivable that MLN9708, the clinical formulation of this proteasome inhibitor, may also achieve bone benefits in myeloma patients. Disclosures: Berger: Millennium Pharmaceuticals, Inc.: Employment. San-Miguel:Millennium Pharmaceuticals, Inc.: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...