GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 21, No. 8 ( 2015-04-15), p. 1916-1924
    Abstract: Purpose: Wee1 regulates key DNA damage checkpoints, and in this study, the efficacy of the Wee1 inhibitor MK-1775 was evaluated in glioblastoma multiforme (GBM) xenograft models alone and in combination with radiation and/or temozolomide. Experimental Design: In vitro MK-1775 efficacy alone and in combination with temozolomide, and the impact on DNA damage, was analyzed by Western blotting and γH2AX foci formation. In vivo efficacy was evaluated in orthotopic and heterotopic xenografts. Drug distribution was assessed by conventional mass spectrometry (MS) and matrix-assisted laser desorption/ionization (MALDI)-MS imaging. Results: GBM22 (IC50 = 68 nmol/L) was significantly more sensitive to MK-1775 compared with five other GBM xenograft lines, including GBM6 (IC50 & gt;300 nmol/L), and this was associated with a significant difference in pan-nuclear γH2AX staining between treated GBM22 (81% cells positive) and GBM6 (20% cells positive) cells. However, there was no sensitizing effect of MK-1775 when combined with temozolomide in vitro. In an orthotopic GBM22 model, MK-1775 was ineffective when combined with temozolomide, whereas in a flank model of GBM22, MK-1775 exhibited both single-agent and combinatorial activity with temozolomide. Consistent with limited drug delivery into orthotopic tumors, the normal brain to whole blood ratio following a single MK-1775 dose was 5%, and MALDI-MS imaging demonstrated heterogeneous and markedly lower MK-1775 distribution in orthotopic as compared with heterotopic GBM22 tumors. Conclusions: Limited distribution to brain tumors may limit the efficacy of MK-1775 in GBM. Clin Cancer Res; 21(8); 1916–24. ©2015 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 24, No. 3 ( 2022-03-12), p. 384-395
    Abstract: Glioblastoma (GBM) is an incurable disease with few approved therapeutic interventions. Radiation therapy (RT) and temozolomide (TMZ) remain the standards of care. The efficacy and optimal deployment schedule of the orally bioavailable small-molecule tumor checkpoint controller lisavanbulin alone, and in combination with, standards of care were assessed using a panel of IDH-wildtype GBM patient-derived xenografts. Methods Mice bearing intracranial tumors received lisavanbulin +/−RT +/−TMZ and followed for survival. Lisavanbulin concentrations in plasma and brain were determined by liquid chromatography with tandem mass spectrometry, while flow cytometry was used for cell cycle analysis. Results Lisavanbulin monotherapy showed significant benefit (P & lt; .01) in 9 of 14 PDXs tested (median survival extension 9%-84%) and brain-to-plasma ratios of 1.3 and 1.6 at 2- and 6-hours postdose, respectively, validating previous data suggesting significant exposure in the brain. Prolonged lisavanbulin dosing from RT start until moribund was required for maximal benefit (GBM6: median survival lisavanbulin/RT 90 vs. RT alone 69 days, P = .0001; GBM150: lisavanbulin/RT 143 days vs. RT alone 73 days, P = .06). Similar observations were seen with RT/TMZ combinations (GBM39: RT/TMZ/lisavanbulin 502 days vs. RT/TMZ 249 days, P = .0001; GBM26: RT/TMZ/lisavanbulin 172 days vs. RT/TMZ 121 days, P = .04). Immunohistochemical analyses showed a significant increase in phospho-histone H3 with lisavanbulin treatment (P = .01). Conclusions Lisavanbulin demonstrated excellent brain penetration, significant extension of survival alone or in RT or RT/TMZ combinations, and was associated with mitotic arrest. These data provide a strong clinical rationale for testing lisavanbulin in combination with RT or RT/TMZ in GBM patients.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 18, No. 12_Supplement ( 2019-12-01), p. C096-C096
    Abstract: Lisavanbulin (LIS; BAL101553) is the prodrug of BAL27862, a microtubule-binding, tumor checkpoint controller and potential radiosensitizer. These studies evaluated optimal integration of LIS with standard of care radiation therapy (RT) and/or temozolomide (TMZ) using GBM PDX models. Distribution across the blood brain barrier was evaluated after a single 30 mg/kg oral LIS dose, and concentrations of the active metabolite BAL27862 were measured by liquid chromatography-tandem mass spectrometry. Similar BAL27862 concentrations were detected in the brain (B) and plasma (P) at both two (B:P ratio 1.29) and six hours (B:P ratio 1.64) post-dose. An in vivo screen of LIS monotherapy across 14 orthotopic GBM PDX models showed significant survival benefit (p & lt;0.01) in seven models (median survival extension 24-87%). Extending from these results, LIS was evaluated in several of the sensitive models in combination with RT +/- TMZ. Two MGMT unmethylated PDXs, GBM6 and GBM150, were treated with vehicle or two weeks of RT +/- LIS. LIS dosing during the RT dosing period did not significantly improve median survival in either line (GBM6 survival with RT 54 days vs RT/LIS 58 days, p=0.16; GBM150 RT 86 days vs RT/LIS 101 days, p=0.21). However, prolonged LIS dosing from the start of RT until mice reached a moribund state demonstrated added benefit (GBM6 median 90 days vs RT 69 days, p=0.0001; GBM150 median 143 days vs RT 73 days, p=0.06). In GBM6, prolonged LIS dosing also significantly extended survival when combined with 2 weeks of RT/TMZ (median 101 days vs 66 days, p & lt;0.0001), while LIS alone or RT/TMZ resulted in similar median survivals (63 days vs 66 days, respectively; p=0.68). This same RT/TMZ/LIS benefit was not seen in the MGMT methylated GBM12. Subsequent experiments were performed to evaluate integration of prolonged LIS dosing with concurrent RT/TMZ followed by 3 cycles of adjuvant TMZ (‘Stupp’ regimen). In MGMT methylated GBM39, LIS alone did not significantly extend survival, but LIS addition to the Stupp regimen doubled median survival (Stupp 249 days vs Stupp/LIS 502 days, p=0.0001). GBM150 demonstrated equal benefit from LIS alone or Stupp regimen (median 118 days vs 123 days, p=0.49). Stupp/LIS showed no additional survival benefit (median 98 days, p=0.97). In a second MGMT unmethylated, TMZ-resistant GBM26 PDX, LIS alone or combined with the Stupp regimen provided significant survival benefit: median survival 53 days for vehicle vs. 80 days for LIS (p=0.0001), 114 days for RT only (p & lt;0.0001), 147 days for RT/LIS (p=0.30 relative to RT), 121 days for ‘Stupp’ regimen alone (p=0.57 relative to RT), and 172 days for Stupp/LIS (p=0.04 relative to Stupp). A follow-up GBM39 study revealed a significant increase in the mitotic marker phospho-histone H3 with LIS treatment relative to vehicle-treated controls (p=0.01) while Ki67 levels were similar (p=0.15). This suggests that LIS induces a mitotic arrest associated with microtubule deregulation. Collectively, these data provide a strong rationale to evaluate lisavanbulin (BAL101553) with RT +/- TMZ in GBM and provided the basis for an ongoing Phase I clinical trial. Citation Format: Danielle M Burgenske, Ann C Mladek, Jenny L Pokorny, Heidi A Lane, Felix Bachmann, Rachael A Vaubel, Mark A Schroeder, Katrina K Bakken, Lihong He, Zeng Hu, Brett L Carlson, Surabhi Talele, Gautham Gampa, Matthew L Kosel, Paul A Decker, Jeanette E Eckel-Passow, William F Elmquist, Jann Sarkaria. Modeling the clinical paradigm of lisavanbulin (BAL101553) deployment in patient-derived xenografts (PDX) of glioblastoma (GBM) [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; 2019 Oct 26-30; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2019;18(12 Suppl):Abstract nr C096. doi:10.1158/1535-7163.TARG-19-C096
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Cell Biology, Rockefeller University Press, Vol. 222, No. 11 ( 2023-11-06)
    Abstract: Melanoma is an aggressive cancer typically arising from transformation of melanocytes residing in the basal layer of the epidermis, where they are in direct contact with surrounding keratinocytes. The role of keratinocytes in shaping the melanoma tumor microenvironment remains understudied. We previously showed that temporary loss of the keratinocyte-specific cadherin, Desmoglein 1 (Dsg1), controls paracrine signaling between normal melanocytes and keratinocytes to stimulate the protective tanning response. Here, we provide evidence that melanoma cells hijack this intercellular communication by secreting factors that keep Dsg1 expression low in the surrounding keratinocytes, which in turn generate their own paracrine signals that enhance melanoma spread through CXCL1/CXCR2 signaling. Evidence suggests a model whereby paracrine signaling from melanoma cells increases levels of the transcriptional repressor Slug, and consequently decreases expression of the Dsg1 transcriptional activator Grhl1. Together, these data support the idea that paracrine crosstalk between melanoma cells and keratinocytes resulting in chronic keratinocyte Dsg1 reduction contributes to melanoma cell movement associated with tumor progression.
    Type of Medium: Online Resource
    ISSN: 0021-9525 , 1540-8140
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2023
    detail.hit.zdb_id: 1421310-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 15, No. 6 ( 2013-6), p. 735-746
    Type of Medium: Online Resource
    ISSN: 1523-5866 , 1522-8517
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2013
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 11, No. 10 ( 2012-10-01), p. 2183-2192
    Abstract: The importance of the blood–brain barrier in preventing effective pharmacotherapy of glioblastoma has been controversial. The controversy stems from the fact that vascular endothelial cell tight junctions are disrupted in the tumor, allowing some systemic drug delivery. P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) efflux drugs from brain capillary endothelial cells into the blood. We tested the hypothesis that although the tight junctions are “leaky” in the core of glioblastomas, active efflux limits drug delivery to tumor-infiltrated normal brain and consequently, treatment efficacy. Malignant gliomas were induced by oncogene transfer into wild-type (WT) mice or mice deficient for Pgp and BCRP (knockout, KO). Glioma-bearing mice were orally dosed with dasatinib, a kinase inhibitor and dual BCRP/PgP substrate that is being currently tested in clinical trials. KO mice treated with dasatinib survived for twice as long as WT mice. Microdissection of the tumor core, invasive rim, and normal brain revealed 2- to 3-fold enhancement in dasatinib brain concentrations in KO mice relative to WT. Analysis of signaling showed that poor drug delivery correlated with the lack of inhibition of a dasatinib target, especially in normal brain. A majority of human glioma xenograft lines tested expressed BCRP or PgP and were sensitized to dasatinib by a dual BCRP/Pgp inhibitor, illustrating a second barrier to drug delivery intrinsic to the tumor itself. These data show that active efflux is a relevant obstacle to treating glioblastoma and provide a plausible mechanistic basis for the clinical failure of numerous drugs that are BCRP/Pgp substrates. Mol Cancer Ther; 11(10); 2183–92. ©2012 AACR.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of the National Cancer Institute, Oxford University Press (OUP), Vol. 108, No. 5 ( 2015-05), p. djv369-
    Type of Medium: Online Resource
    ISSN: 0027-8874 , 1460-2105
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2015
    detail.hit.zdb_id: 2992-0
    detail.hit.zdb_id: 1465951-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Current Protocols in Pharmacology, Wiley, Vol. 52, No. 1 ( 2011-03)
    Abstract: Development of clinically relevant tumor model systems for glioblastoma multiforme (GBM) is important for advancement of basic and translational biology. One model that has gained wide acceptance in the neuro‐oncology community is the primary xenograft model. This model entails the engraftment of patient tumor specimens into the flank of nude mice and subsequent serial passage of these tumors in the flank of mice. These tumors are then used to establish short‐term explant cultures or intracranial xenografts. This unit describes detailed procedures for establishment, maintenance, and utilization of a primary GBM xenograft panel for the purpose of using them as tumor models for basic or translational studies. Curr. Protoc. Pharmacol . 52:14.16.1‐14.16.23. © 2011 by John Wiley & Sons, Inc.
    Type of Medium: Online Resource
    ISSN: 1934-8282 , 1934-8290
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2011
    detail.hit.zdb_id: 2179074-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 18, No. 15 ( 2012-08-01), p. 4070-4079
    Abstract: Purpose: The therapeutic benefit of temozolomide in glioblastoma multiforme (GBM) is limited by resistance. The goal of this study was to elucidate mechanisms of temozolomide resistance in GBM. Experimental Design: We developed an in vivo GBM model of temozolomide resistance and used paired parental and temozolomide-resistant tumors to define the mechanisms underlying the development of resistance and the influence of histone deacetylation (HDAC) inhibition. Results: Analysis of paired parental and resistant lines showed upregulation of O6-methylguanine-DNA methyltransferase (MGMT) expression in 3 of the 5 resistant xenografts. While no significant change was detected in MGMT promoter methylation between parental and derivative-resistant samples, chromatin immunoprecipitation showed an association between MGMT upregulation and elevated acetylation of lysine 9 of histone H3 (H3K9-ac) and decreased dimethylation (H3K9-me2) in GBM12 and GBM14. In contrast, temozolomide resistance development in GBM22 was not linked to MGMT expression, and both parental and resistant lines had low H3K9-ac and high H3K9-me2 within the MGMT promoter. In the GBM12TMZ-resistant line, MGMT reexpression was accompanied by increased recruitment of SP1, C-JUN, NF-κB, and p300 within the MGMT promoter. Interestingly, combined treatment of GBM12 flank xenografts with temozolomide and the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) favored the evolution of temozolomide resistance by MGMT overexpression as compared with treatment with temozolomide alone. Conclusion: This study shows, for the first time, a unique mechanism of temozolomide resistance development driven by chromatin-mediated MGMT upregulation and highlights the potential for epigenetically directed therapies to influence the mechanisms of resistance development in GBM. Clin Cancer Res; 18(15); 4070–9. ©2012 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. 2617-2617
    Abstract: GNE-317 is a dual PI3K/mTOR inhibitor with excellent blood-brain barrier penetration. In this study, the efficacy of GNE-317 was evaluated in the Mayo panel of primary glioblastoma multiforme (GBM) xenografts. Based on the concept of oncogene addiction, we hypothesized that GNE-317 would be most efficacious in EGFR-hyper-activated and/or PTEN-deficient lines. In a CyQUANT cell proliferation assay, the inhibitory concentration of 50% cell number (IC50) for GBM6, 10, 22, and 84 were 0.59±0.50, 0.72±0.40, 0.26±0.14, and 3.49±1.64 microM, respectively. In these selected lines, there was a poor correlation between EGFR or PTEN status and in vitro response. The efficacy of GNE-317 also was evaluated in 10 lines in an orthotopic xenograft model. Mice with established tumors were randomized to daily dosing with GNE-317 (30 mg/kg) or placebo until moribund. Similar to in vitro data, there was a spectrum of response to GNE-317 (Table 1). The survival benefit ratio (ratio of median survival) did not correlate with EGFR amplification (P=0.78), EGFR mutation (P=0.25), or PTEN (P=0.55) status when analyzed singly. However, GNE-317 did extend survival in 4 of 5 lines in which either EGFR or PTEN were deregulated. To evaluate potentially clinically relevant combinations, the efficacy of GNE-317 combined with bevacizumab (BEV) was tested in the same orthotopic model in GBM8, 10, and 59. In GBM10, GNE-317/BEV provided a significant increase in survival compared to the most effective single agent (P & lt;0.0001). In GBM8, 10, and 59, the ratio of median survival for GNE-317/BEV vs. placebo were 1.47, 1.75, and 1.74, respectively (all P≤0.01). In conclusion, there may be a correlation between deregulation of the EGFR/PTEN signaling network and GNE-317 efficacy, and the efficacy of GNE-317 in some models can be extended when combined with bevacizumab. Table 1:Molecular Characteristics and Efficacy of GNE-317 in Mayo Primary GBM XenograftsEGFR AmplifiedEGFR vIII MutatedPTEN MutatedGNE-317 Responder*Benefit Ratio** of GNE-317GBM6YesYesWTYes1.35GBM8YesNoYes, HDYes1.19GBM10NoNoYes, HDYes1.47GBM22NoNoWTNo0.85GBM59YesYesYes, HDYes1.27GBM84YesNoYes, del Exon 1No1.02GBM115NoNoTBDNo0.86GBM116NoNoTBDNo1.05GBM117NoNoTBDYes1.38GBM122YesNoTBDNo0.99Abbreviations: HD=homozygous deleted; del=deletion in; TBD=to be determined; WT=wild type.* If in vivo survival difference reached P & lt;0.05 by Log-rank Kaplan-Meier method between the GNE-317 treated and placebo groups, the GBM line was classified as a responder to GNE-317.** The benefit ratio equals to median survival of the GNE-317 treated group, divided by that of the placebo group. Note: This abstract was not presented at the meeting. Citation Format: Terence T. Sio, Jenny L. Pokorny, Ann C. Mladek, Brett L. Carlson, Mark A. Schroeder, Dennis O. Iyekegbe, Katrina Bakken, Laurent Salphati, Heidi Phillips, Jann N. Sarkaria. Preclinical efficacy of GNE-317, a dual PI3K/mTOR inhibitor, with or without bevacizumab in EGFR and/or PTEN-mutated glioblastoma multiforme. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 2617. doi:10.1158/1538-7445.AM2014-2617
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...