GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Swiss Medical Weekly, SMW Supporting Association, Vol. 152, No. 0102 ( 2022-01-06), p. w30133-
    Abstract: BACKGROUND: Airborne transmission of SARS-CoV-2 is an important route of infection. For the wildtype (WT) only a small proportion of those infected emitted large quantities of the virus. The currently prevalent variants of concern, Delta (B1.617.2) and Omicron (B.1.1.529), are characterized by higher viral loads and a lower minimal infective dose compared to the WT. We aimed to describe the resulting distribution of airborne viral emissions and to reassess the risk estimates for public settings given the higher viral load and infectivity. METHOD: We reran the Monte Carlo modelling to estimate viral emissions in the fine aerosol size range using available viral load data. We also updated our tool to simulate indoor airborne transmission of SARS-CoV-2 by including a CO2 calculator and recirculating air cleaning devices. We also assessed the consequences of the lower critical dose on the infection risk in public settings with different protection strategies. RESULTS: Our modelling suggests that a much larger proportion of individuals infected with the new variants are high, very high or super-emitters of airborne viruses: for the WT, one in 1,000 infected was a super-emitter; for Delta one in 30; and for Omicron one in 20 or one in 10, depending on the viral load estimate used. Testing of the effectiveness of protective strategies in view of the lower critical dose suggests that surgical masks are no longer sufficient in most public settings, while correctly fitted FFP2 respirators still provide sufficient protection, except in high aerosol producing situations such as singing or shouting. DISCUSSION: From an aerosol transmission perspective, the shift towards a larger proportion of very high emitting individuals, together with the strongly reduced critical dose, seem to be two important drivers of the aerosol risk, and are likely contributing to the observed rapid spread of the Delta and Omicron variants of concern. Reducing contacts, always wearing well-fitted FFP2 respirators when indoors, using ventilation and other methods to reduce airborne virus concentrations, and avoiding situations with loud voices seem critical to limiting these latest waves of the COVID-19 pandemic.
    Type of Medium: Online Resource
    ISSN: 1424-3997
    Language: Unknown
    Publisher: SMW Supporting Association
    Publication Date: 2022
    detail.hit.zdb_id: 2031164-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2017
    In:  Proceedings of the National Academy of Sciences Vol. 114, No. 11 ( 2017-03-14), p. 2848-2853
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 11 ( 2017-03-14), p. 2848-2853
    Abstract: Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980–1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate–soil interactions. Using moderate climate-change scenarios for 2080–2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate–soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...