GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2018
    In:  BMC Evolutionary Biology Vol. 18, No. 1 ( 2018-12)
    In: BMC Evolutionary Biology, Springer Science and Business Media LLC, Vol. 18, No. 1 ( 2018-12)
    Type of Medium: Online Resource
    ISSN: 1471-2148
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2041493-6
    detail.hit.zdb_id: 3053924-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2013
    In:  Fungal Diversity Vol. 58, No. 1 ( 2013-1), p. 185-198
    In: Fungal Diversity, Springer Science and Business Media LLC, Vol. 58, No. 1 ( 2013-1), p. 185-198
    Type of Medium: Online Resource
    ISSN: 1560-2745 , 1878-9129
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 2424484-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 378, No. 6623 ( 2022-12-02)
    Abstract: The Republic of Madagascar is home to a unique assemblage of taxa and a diverse set of ecosystems. These high levels of diversity have arisen over millions of years through complex processes of speciation and extinction. Understanding this extraordinary diversity is crucial for highlighting its global importance and guiding urgent conservation efforts. However, despite the detailed knowledge that exists on some taxonomic groups, there are large knowledge gaps that remain to be filled. ADVANCES Our comprehensive analysis of major taxonomic groups in Madagascar summarizes information on the origin and evolution of terrestrial and freshwater biota, current species richness and endemism, and the utilization of this biodiversity by humans. The depth and breadth of Madagascar’s biodiversity—the product of millions of years of evolution in relative isolation —is still being uncovered. We report a recent acceleration in the scientific description of species but many remain relatively unknown, particularly fungi and most invertebrates. DIGITIZATION Digitization efforts are already increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge in Madagascar. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. Among the new data presented, our update on plant numbers estimates 11,516 described vascular plant species native to Madagascar, of which 82% are endemic, in addition to 1215 bryophyte species, of which 28% are endemic. Humid forests are highlighted as centers of diversity because of their role as refugia and centers of recent and rapid radiations, but the distinct endemism of other areas such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest is also important despite lower species richness. Endemism in Malagasy fungi remains poorly known given the lack of data on the total diversity and global distribution of species. However, our analysis has shown that ~75% of the fungal species detected by environmental sequencing have not been reported as occurring outside of Madagascar. Among the 1314 species of native terrestrial and freshwater vertebrates, levels of endemism are extremely high (90% overall)—all native nonflying terrestrial mammals and native amphibians are found nowhere else on Earth; further, 56% of the island’s birds, 81% of freshwater fishes, 95% of mammals, and 98% of reptile species are endemic. Little is known about endemism in insects, but data from the few well-studied groups on the island suggest that it is similarly high. The uses of Malagasy species are many, with much potential for the uncovering of useful traits for food, medicine, and climate mitigation. OUTLOOK Considerable work remains to be done to fully characterize Madagascar’s biodiversity and evolutionary history. The multitudes of known and potential uses of Malagasy species reported here, in conjunction with the inherent value of this unique and biodiverse region, reinforce the importance of conserving this unique biota in the face of major threats such as habitat loss and overexploitation. The gathering and analysis of data on Madagascar’s remarkable biota must continue and accelerate if we are to safeguard this unique and highly threatened subset of Earth’s biodiversity. Emergence and composition of Madagascar’s extraordinary biodiversity. Madagascar’s biota is the result of over 160 million years of evolution, mostly in geographic isolation, combined with sporadic long distance immigration events and local extinctions. (Left) We show the age of the oldest endemic Malagasy clade for major groups (from bottom to top): arthropods, bony fishes, reptiles, flatworms, birds, amphibians, flowering plants, mammals, non-flowering vascular plants, and mollusks). Humans arrived recently, some 10,000 to 2000 years (top right) and have directly or indirectly caused multiple extinctions (including hippopotamus, elephant birds, giant tortoises, and giant lemurs) and introduced many new species (such as dogs, zebu, rats, African bushpigs, goats, sheep, rice). Endemism is extremely high and unevenly distributed across the island (the heat map depicts Malagasy palm diversity, a group characteristic of the diverse humid forest). Human use of biodiversity is widespread, including 1916 plant species with reported uses. The scientific description of Malagasy biodiversity has accelerated greatly in recent years (bottom right), yet the diversity and evolution of many groups remain practically unknown, and many discoveries await.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 378, No. 6623 ( 2022-12-02)
    Abstract: Madagascar is one of the world’s foremost biodiversity hotspots. Its unique assemblage of plants, animals, and fungi—the majority of which evolved on the island and occur nowhere else—is both diverse and threatened. After human arrival, the island’s entire megafauna became extinct, and large portions of the current flora and fauna may be on track for a similar fate. Conditions for the long-term survival of many Malagasy species are not currently met because of multiple anthropogenic threats. ADVANCES We review the extinction risk and threats to biodiversity in Madagascar, using available international assessment data as well as a machine learning analysis to predict the extinction risks and threats to plant species lacking assessments. Our compilation of global International Union for Conservation of Nature (IUCN) Red List assessments shows that overexploitation alongside unsustainable agricultural practices affect 62.1 and 56.8% of vertebrate species, respectively, and each affects nearly 90% of all plant species. Other threats have a relatively minor effect today but are expected to increase in coming decades. Because only one-third (4652) of all Malagasy plant species have been formally assessed, we carried out a neural network analysis to predict the putative status and threats for 5887 unassessed species and to evaluate biases in current assessments. The percentage of plant species currently assessed as under threat is probably representative of actual numbers, except in the case of the ferns and lycophytes, where significantly more species are estimated to be threatened. We find that Madagascar is home to a disproportionately high number of Evolutionarily Distinct and Globally Endangered (EDGE) species. This further highlights the urgency for evidence-based and effective in situ and ex situ conservation. Despite these alarming statistics and trends, we find that 10.4% of Madagascar’s land area is protected and that the network of protected areas (PAs) covers at least part of the range of 97.1% of terrestrial and freshwater vertebrates with known distributions (amphibians, freshwater fishes, reptiles, birds, and mammal species combined) and 67.7% of plant species (for threatened species, the percentages are 97.7% for vertebrates and 79.6% for plants). Complementary to this, ex situ collections hold 18% of vertebrate species and 23% of plant species. Nonetheless, there are still many threatened species that do not occur within PAs and are absent from ex situ collections, including one amphibian, three mammals, and seven reptiles, as well as 559 plants and more yet to be assessed. Based on our updated vegetation map, we find that the current PA network provides good coverage of the major habitats, particularly mangroves, spiny forest, humid forest, and tapia, but subhumid forest and grassland-woodland mosaic have very low areas under protection (5.7 and 1.8% respectively). OUTLOOK Madagascar is among the world’s poorest countries, and its biodiversity is a key resource for the sustainable future and well-being of its citizens. Current threats to Madagascar’s biodiversity are deeply rooted in historical and present social contexts, including widespread inequalities. We therefore propose five opportunities for action to further conservation in a just and equitable way. First, investment in conservation and restoration must be based on evidence and effectiveness and be tailored to meet future challenges through inclusive solutions. Second, expanded biodiversity monitoring, including increased dataset production and availability, is key. Third, improving the effectiveness of existing PAs—for example through community engagement, training, and income opportunities—is more important than creating new ones. Fourth, conservation and restoration should not focus solely on the PA network but should also include the surrounding landscapes and communities. And finally, conservation actions must address the root causes of biodiversity loss, including poverty and food insecurity. In the eyes of much of the world, Madagascar’s biodiversity is a unique global asset that needs saving; in the daily lives of many of the Malagasy people, it is a rapidly diminishing source of the most basic needs for subsistence. Protecting Madagascar’s biodiversity while promoting social development for its people is a matter of the utmost urgency Visual representation of five key opportunities for conserving and restoring Madagascar’s rapidly declining biodiversity identified in this Review. The dashed lines point to representative vegetation types where these recommendations could have tangible effects, but the opportunities are applicable across Madagascar. ILLUSTRATION: INESSA VOET
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Phytotaxa, Magnolia Press, Vol. 505, No. 2 ( 2021-05-31)
    Abstract: Samples for isolation of dictyostelid cellular slime molds were obtained from 20 collecting sites at 18 localities in south central and southeastern Madagascar during May 2009. At least thirty species of dictyostelids representing seven genera were recovered from 52 samples of soil/humus. This total included 17 species described as new to science, 13 species already known from various localities throughout the world, and four isolates that remain unidentified. Fourteen of the new species isolated from these samples are members of the whorl-branched, light-spored genus Heterostelium (formerly Polysphondylium). The overall level of species richness of dictyostelids in Madagascar is greater than what is known for all of mainland Africa sampled to date. Levels of biodiversity in Madagascar were higher for mesic than for xeric vegetation types, and each of the newly described species of Heterostelium appeared to have a limited distribution among the localities sampled.
    Type of Medium: Online Resource
    ISSN: 1179-3163 , 1179-3155
    URL: Issue
    Language: Unknown
    Publisher: Magnolia Press
    Publication Date: 2021
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Global Change Biology, Wiley, Vol. 29, No. 12 ( 2023-06), p. 3240-3255
    Abstract: Climate change, biodiversity loss, and chemical pollution are planetary‐scale emergencies requiring urgent mitigation actions. As these “triple crises” are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology, and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Informa UK Limited ; 2020
    In:  Mycologia Vol. 112, No. 5 ( 2020-09-02), p. 1026-1042
    In: Mycologia, Informa UK Limited, Vol. 112, No. 5 ( 2020-09-02), p. 1026-1042
    Type of Medium: Online Resource
    ISSN: 0027-5514 , 1557-2536
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2020
    detail.hit.zdb_id: 2076341-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Wiley ; 2012
    In:  Journal of Biogeography Vol. 39, No. 5 ( 2012-05), p. 998-1003
    In: Journal of Biogeography, Wiley, Vol. 39, No. 5 ( 2012-05), p. 998-1003
    Type of Medium: Online Resource
    ISSN: 0305-0270
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2012
    detail.hit.zdb_id: 2020428-0
    detail.hit.zdb_id: 188963-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Fungi, MDPI AG, Vol. 8, No. 6 ( 2022-05-31), p. 593-
    Abstract: Dictyostelid cellular slime molds (dictyostelids) are ubiquitous microorganisms found in the uppermost layers of most soils. Reports on the species diversity of dictyostelids in Southeast Asia, particularly Thailand, are few in number. A survey for dictyostelids performed in northern Thailand in 2008 recovered 15 distinctive forms, including several common species and a number of forms morphologically different from anything already described. Five of the latter were formally described as new to science in a previous paper. An additional five isolates appeared to be morphologically distinct, and this was supported by DNA sequence data and phylogenetic analysis. These isolates representing four species are described herein as species new to science. Detailed descriptions and illustrations of these new species are provided.
    Type of Medium: Online Resource
    ISSN: 2309-608X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2784229-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Informa UK Limited ; 2016
    In:  Mycologia Vol. 108, No. 1 ( 2016-01), p. 80-109
    In: Mycologia, Informa UK Limited, Vol. 108, No. 1 ( 2016-01), p. 80-109
    Type of Medium: Online Resource
    ISSN: 0027-5514 , 1557-2536
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2016
    detail.hit.zdb_id: 2076341-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...