GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Person/Organisation
Language
Years
  • 1
    In: The Astrophysical Journal, American Astronomical Society, Vol. 935, No. 1 ( 2022-08-01), p. 10-
    Abstract: One month after launching the Gravitational Wave High-energy Electromagnetic Counterpart All-sky Monitor, a bright thermonuclear X-ray burst from 4U 0614+09 was observed on 2021 January 24. We report the time-resolved spectroscopy of the burst and a hint of burst oscillation at 413 Hz with a fractional amplitude ∼2.0% (rms). This coincides with the burst oscillation previously discovered with Swift/Burst Alert Telescope (Strohmayer et al. 2008), and therefore supports the spin frequency of this source. This burst is a bright one in the normal bursts detected from 4U 0614+09, which leads to an upper limit of distance estimation of 3.1 kpc. The folded light curve during the burst oscillation shows a sinusoidal structure, which is consistent with previous observations.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Science China Physics, Mechanics & Astronomy Vol. 66, No. 5 ( 2023-05)
    In: Science China Physics, Mechanics & Astronomy, Springer Science and Business Media LLC, Vol. 66, No. 5 ( 2023-05)
    Type of Medium: Online Resource
    ISSN: 1674-7348 , 1869-1927
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2546757-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 514, No. 2 ( 2022-06-17), p. 2397-2406
    Abstract: Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) is a dedicated mission, launched in December 2020, for gamma-ray transients, including gamma-ray bursts (GRBs) and soft gamma repeater (SGR) bursts in the multimessenger and multiwavelength astronomy era. Since GECAM consists of two independent spacecrafts (or say instruments), and the framework of data analysis for multiple spacecrafts is distinctive from that for only one spacecraft, which is the case for most GRB missions, we developed a dedicated pipeline called Energetic Transients Joint Analysis System for Multi-INstrument (ETJASMIN) for GECAM mission. This pipeline has been naturally extended to incorporate data from other gamma-ray instruments, including the operating missions, such as Insight-HXMT/HE, Fermi/GBM, Swift/BAT, INTEGRAL/SPI-ACS, Konus-Wind, and GRID, as well as the forthcoming missions, such as SVOM/GRM and HEBS. In this paper, we present this pipeline with a focus on the data analysis procedures, methodology, and results in terms of the localization, verification (classification), spectral, and temporal analyses of gamma-ray transients. We show that this pipeline could provide more accurate, reliable, and comprehensive results than that of individual spacecraft, which is beneficial for gamma-ray transients observation.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Monthly Notices of the Royal Astronomical Society Vol. 525, No. 3 ( 2023-09-01), p. 3399-3412
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 525, No. 3 ( 2023-09-01), p. 3399-3412
    Abstract: As the main detector of the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor mission (GECAM), the calibration of the energy response and detection efficiency of the gamma-ray detector (GRD) is the main content of the ground-based calibration. This article mainly focuses on the calibration of the energy response and detection efficiency in the 8–160 keV with a refined measurement around the absorption edges of the lanthanum bromide crystal ($\rm {LaBr_3}$). The GRD performances for different crystal types, data acquisition modes, working modes, and incident positions are also analysed in detail. We show that the calibration campaign is comprehensive, the detector performance meets the flight requirements, and the calibration results generally agree with simulations as expected. The detector’s model was corrected by the ground-based calibration, which led to the establishment of the calibration data base.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2021
    In:  Acta Physica Sinica Vol. 70, No. 8 ( 2021), p. 082901-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 70, No. 8 ( 2021), p. 082901-
    Abstract: At present, there exist few proton-beam terminals for the detector calibration in the world. Meanwhile, most of these terminals provide monoenergetic protons. Back-n white neutron source from China Spallation Neutron Source(CSNS) was put into operation in 2018. Based on the white neutron flux ranging from 0.5 eV to 200 MeV from the CSNS Back-n white neutron source, continuous-energy protons involved in a wide energy spectrum can be acquired from the 〈sup〉1〈/sup〉H(n, el) reaction. Adopting this method, a new research platform for researches such as proton calibration is realized at CSNS. As hydrogen exists as gas at normal temperature and pressure, in the selecting of the proton-converting target, the hydrogen-rich compounds are preferential considered. Considering the reaction cross sections of the 〈sup〉1〈/sup〉H(n, el), 〈sup〉12〈/sup〉C(n, p)〈sup〉12〈/sup〉B, 〈sup〉12〈/sup〉C(n, d)〈sup〉11〈/sup〉B, 〈sup〉12〈/sup〉C(n, t)〈sup〉10〈/sup〉B, 〈sup〉12〈/sup〉C(n, 〈sup〉3〈/sup〉He)〈sup〉10〈/sup〉Be, 〈sup〉12〈/sup〉C(n, α)〈sup〉9〈/sup〉Be and 〈sup〉1〈/sup〉H(n, γ)〈sup〉2〈/sup〉H, polyethylene and polypropylene are suitable for serving as targets in this research. Based on a 3U PXIe, digitizers with 1 GSps sampling rate and 12 bit resolution are utilized to digitize and record the output signals of telescopes. The time and amplitude information of each signal are extracted from its recorded waveform. Proton fluxes can be calculated by using the neutron energy spectrum and the cross section of the 〈sup〉1〈/sup〉H(n, el) reaction. Using the γ-flash event as the starting time of the time-of-flight (TOF) and the time information of signal in detector as the stopping time, the kinematic energy of each secondary proton can be deduced from the TOF and the angle of the detector. A calibration experiment on three charged particle telescopes, with each telescope consisting of a silicon detector and a CsI(Tl) detector, is carried out on this research platform. The readout methods of the CsI(Tl) detectors in these three telescopes are different. In the calibration experiment, Δ〈i〉E-〈/i〉〈i〉E〈/i〉 two-dimensional spectra and amplitude-〈i〉E〈/i〉〈sub〉p〈/sub〉 two-dimensional spectra of these telescopes are obtained. Through comparing these particle identification spectra, the SiPM is chosen as the signal readout method for CsI(Tl) detectors in the charged particle telescopes. These researches provide experimental evidence for the construction of the charged particle telescope at Back-n, and also illustrate the feasibility of wide-energy spectrum proton calibration based on the Back-n white neutron source.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2021
    In:  Acta Physica Sinica Vol. 70, No. 22 ( 2021), p. 222801-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 70, No. 22 ( 2021), p. 222801-
    Abstract: The data of neutron capture cross section are very important for the research of nuclear astrophysics, advanced nuclear energy development. Owing to the limitation of neutron source and detector, the experimental data of neutron capture cross section in an energy range of 1 eV–10 keV were almost blank in China. The first Chinese gamma-ray total absorption facility has been constructed in the key laboratory of nuclear data at China institute of atomic energy, which consists of 40 BaF〈sub〉2〈/sub〉 detector units. The BaF〈sub〉2〈/sub〉 crystal shell with a thickness of 15 cm and an inner radius of 10 cm covers 95.2% of the solid angle. On-line measurement method of neutron capture reaction cross section is established on the back-streaming white neutron source of China spallation neutron source by using the upgraded facility. The cross section of 〈sup〉197〈/sup〉Au neutron capture reaction is measured for the first time under the experimental condition of irregular 30 mm neutron beam spot. The measured position of resonance peak is well consistent with the relevant data of ENDF evaluation database, which verifies the reliability of the measurement device and measurement technology, and thus laying the foundation for the acquisition of high precision cross section in future.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2024
    In:  Acta Physica Sinica Vol. 73, No. 7 ( 2024), p. 072801-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 73, No. 7 ( 2024), p. 072801-
    Abstract: Neutron capture reaction is one of the neutron reactions and plays an important role in using reactor control rods and shell materials, designing nuclear device structures, and studying nuclear astrophysics S processes and element origins. The 4π BaF 〈 sub 〉 2 〈 /sub 〉 detection device has advantages such as high time resolution, low neutron sensitivity, and high detection efficiency, thus making it suitable for measuring neutron radiation capture reaction cross-section data. In order to fill the gap in our neutron capture reaction data in the keV energy range and improve their accuracy, the Key Laboratory of Nuclear Data at the Chinese Institute of Atomic Energy (CIAE) has established a Gamma Total Absorption Facility (GTAF), which consists of 28 hexagonal BaF 〈 sub 〉 2 〈 /sub 〉 crystals and 12 pentagonal BaF 〈 sub 〉 2 〈 /sub 〉 crystals to form a spherical shell with an external diameter of 25 cm and an internal diameter of 10 cm, covering 95.2% of the solid angles. The Back-n beam line of the Chinese Spallation Neutron Source (CSNS) is a back-streaming white beam line that covers neutron energy ranging from a few eV to several hundred MeV, making it suitable for measuring neutron capture cross-sections. The reaction cross-section data of 〈 sup 〉 197 〈 /sup 〉 Au is measured by using GTAF on the Back-n beam line. The measurement data are preliminarily background deducted through energy screening, PSD method, and crystal multiplicity screening. Subsequently, the background is analyzed and deducted based on the measurement data of 〈 sup 〉 nat 〈 /sup 〉 C and empty samples, and the yield of 〈 sup 〉 197 〈 /sup 〉 Au capture reaction is obtained. Resonance parameters are a set of parameters extracted from experimental data to describe the resonance curve, which can eliminate the influence of experimental conditions on resonance data and are more important than the cross-section obtained from experiments. The resonance energy, neutron resonance width, and gamma resonance width parameters of 〈 sup 〉 197 〈 /sup 〉 Au at 1–100 eV are fitted by using the SAMMY program. From the comparison between the resonance curves obtained from experimental measurements and the resonance parameters obtained from fitting with the ENDF/B-VIII.0 database, it can follow that the experimental measurement results are in good agreement with the database, nevertheless, there exist some differences in the resonance parameter, which may be due to the GTAF energy resolution, Back-n neutron spectrum measurement accuracy, and the experimental background deduction method. Our next work is to identify the sources of difference.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2024
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2020
    In:  Acta Physica Sinica Vol. 69, No. 17 ( 2020), p. 172901-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 69, No. 17 ( 2020), p. 172901-
    Abstract: The back-streaming neutron beam line (Back-n) was built in the beginning of 2018, which is part of the China Spallation Neutron Source (CSNS). The Back-n is the first white neutron beam line in China, and its main application is for nuclear data measurement. For most of neutron-induced nuclear reaction measurements based on white neutron facilities, the beam of gamma rays accompanied with neutron beam is one of the most important experimental backgrounds. The back streaming neutron beam is transported directly from the spallation target to the experimental station without any moderator or shielding, the flux of the in-beam gamma rays in the experimental station is much larger than those of these facilities with neutron moderator and shielding. Therefore, it is necessary to consider the influence of in-beam gamma rays on the experimental results. Studies of the in-beam gamma rays are carried out at the back-n. Monte-Carlo simulation is employed to obtain the energy distribution and the time structure of the in-beam gamma rays. According to the simulation results, when the neutron flight time is longer than 1.0 μs the energy distribution of the in-beam gamma rays does not vary with flight time. Therefore, the time structure of these gamma rays can be measured without the correction of the detection efficiency. In this work, the time structure of the in-beam gamma rays in the low neutron energy region is measured by both direct and indirect methods. In the direct measurement, a 〈sup〉6〈/sup〉Li loaded ZnS(Ag) scintillator is located on the neutron beam line and the time of flight method is used to determine the time structure of neutrons and gamma rays. The gamma rays are separated from neutrons with pulse-shape discrimination. The black filter method is used to verify the particle discrimination results. In the indirect measurement, the C〈sub〉6〈/sub〉D〈sub〉6〈/sub〉 scintillation detectors are used to measure the gamma rays scattered off a Pb sample on the way of the neutron beam. The time structure of the in-beam gamma rays is derived from that of the scattered gamma rays. The experimental results are in good agreement with the simulations with the time-of-flight between 12 μs and 2.0 ms. Besides, according to the simulation results, the intensity of the in-beam gamma rays is 1.21 × 10〈sup〉6〈/sup〉 s〈sup〉–1〈/sup〉·cm〈sup〉–2〈/sup〉 in the center of the experimental station 2 of Back-n, which is 76.5 m away from the spallation target of CSNS.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2020
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Astronomical Society ; 2023
    In:  The Astrophysical Journal Supplement Series Vol. 265, No. 1 ( 2023-03-01), p. 17-
    In: The Astrophysical Journal Supplement Series, American Astronomical Society, Vol. 265, No. 1 ( 2023-03-01), p. 17-
    Abstract: The Gravitational Wave High-energy Electromagnetic Counterpart All-sky Monitor (GECAM) is a pair of microsatellites (i.e., GECAM-A and GECAM-B) dedicated to monitoring gamma-ray transients including the high-energy electromagnetic counterparts of gravitational waves, such as gamma-ray bursts, soft gamma-ray repeaters, solar flares, and terrestrial gamma-ray flashes. Since launch in 2020 December, GECAM-B has detected hundreds of astronomical and terrestrial events. For these bursts, localization is the key for burst identification and classification as well as follow-up observations in multiple wavelengths. Here, we propose a Bayesian localization method with Poisson data with Gaussian background profile likelihood to localize GECAM bursts based on the distribution of burst counts in detectors with different orientations. We demonstrate that this method can work well for all kinds of bursts, especially extremely short ones. In addition, we propose a new method to estimate the systematic error of localization based on a confidence level test, which can overcome some problems of the existing method in the literature. We validate this method by Monte Carlo simulations, and then apply it to a burst sample with accurate location and find that the mean value of the systematic error of GECAM-B localization is ∼2.°5. By considering this systematic error, we can obtain a reliable localization probability map for GECAM bursts. Our methods can be applied to other gamma-ray monitors.
    Type of Medium: Online Resource
    ISSN: 0067-0049 , 1538-4365
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2006860-8
    detail.hit.zdb_id: 2207650-5
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Nuclear Science and Techniques, Springer Science and Business Media LLC, Vol. 34, No. 8 ( 2023-08)
    Type of Medium: Online Resource
    ISSN: 1001-8042 , 2210-3147
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2238719-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...