GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Clinical Investigation, American Society for Clinical Investigation, Vol. 103, No. 3 ( 1999-2-1), p. 331-340
    Type of Medium: Online Resource
    ISSN: 0021-9738
    Language: English
    Publisher: American Society for Clinical Investigation
    Publication Date: 1999
    detail.hit.zdb_id: 2018375-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular and Cellular Biology, Informa UK Limited, Vol. 31, No. 11 ( 2011-06-01), p. 2276-2286
    Type of Medium: Online Resource
    ISSN: 1098-5549
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2011
    detail.hit.zdb_id: 1474919-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Biochemical Journal, Portland Press Ltd., Vol. 417, No. 1 ( 2009-01-01), p. 141-148
    Abstract: Two major isoforms of protein 4.1R, a 135 kDa isoform (4.1R135) and an 80 kDa isoform (4.1R80), are expressed at distinct stages of terminal erythroid differentiation. The 4.1R135 isoform is exclusively expressed in early erythroblasts and is not present in mature erythrocytes, whereas the 4.1R80 isoform is expressed at late stages of erythroid differentiation and is the principal component of mature erythrocytes. These two isoforms differ in that the 4.1R135 isoform includes an additional 209 amino acids designated as the HP (head-piece) at the N-terminus of 4.1R80. In the present study, we performed detailed characterization of the interactions of the two 4.1R isoforms with various membrane-binding partners and identified several isoform-specific differences. Although both 4.1R135 and 4.1R80 bound to cytoplasmic domains of GPC (glycophorin C) and band 3, there is an order of magnitude difference in the binding affinities. Furthermore, although both isoforms bound CaM (calmodulin), the binding of 4.1R80 was Ca2+-independent, whereas the binding of 4.1R135 was strongly Ca2+-dependent. The HP of 4.1R135 mediates this Ca2+-dependent binding. Ca2+-saturated CaM completely inhibited the binding of 4.1R135 to GPC, whereas it strongly reduced the affinity of its binding to band 3. Interestingly, in spite of the absence of spectrin-binding activity, the 4.1R135 isoform was able to assemble on to the membrane of early erythroblasts suggesting that its ability to bind to membrane proteins is sufficient for its membrane localization. These findings enable us to offer potential new insights into the differential contribution of 4.1R isoforms to membrane assembly during terminal erythroid differentiation.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2009
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Physical Activity and Health, Human Kinetics, Vol. 6, No. 5 ( 2009-09), p. 568-577
    Abstract: Physical activity (PA) participation offers many benefits especially among ethnic groups that experience health disparities. Partnering with faith-based organizations allows for a more culturally tailored approach to changing health behaviors. Methods: 8 Steps to Fitness was a faith-based behavior-change intervention promoting PA among members of African American churches. A quasi-experimental design was used to examine differences between the intervention group ( n =72) and comparison group (n = 74). Health (resting blood pressure, body mass index, waist-hip ratio, fasting blood glucose), psycho-social (PA self-efficacy, social support, enjoyment, self-regulation, depression), and behavioral variables (PA, diet) were assessed at baseline, 3- and 6-months. Repeated measures ANCOVAs tested changes across time between groups. Results: At 3-months, the intervention group showed significantly more favorable changes in body mass index, waist circumference and social support than the control group. At 6-months, the intervention group showed significantly more favorable changes in hip circumference, waist to hip ratio, systolic blood pressure, and depressive symptoms. There was notable attrition from both the intervention (36%) and the comparison group (58%). Conclusions: This study was conducted in a real-world setting, and provided insight into how to deliver a culturally-tailored PA intervention program for African Americans with a potential for dissemination.
    Type of Medium: Online Resource
    ISSN: 1543-3080 , 1543-5474
    Language: Unknown
    Publisher: Human Kinetics
    Publication Date: 2009
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 3331-3331
    Abstract: Computational analysis of RNA-seq data from highly purified human erythroblasts has been instrumental in revealing changes in pre-mRNA splicing during terminal erythropoiesis. Here we report updated studies of intron retention (IR), a type of alternative splicing in which specific introns are retained in otherwise efficiently-processed transcripts, allowing post-transcriptional modulation of cellular mRNA levels. Differences in differentiation stage-specificity, degree of retention, nuclear/cytoplasmic localization, and sensitivity to nonsense-mediated decay (NMD) suggest the existence of multiple classes of erythroblast IR subject to distinct regulatory controls. Two clusters comprising ~470 "developmentally dynamic" introns in 354 genes exhibit more efficient splicing in proerythroblasts, but elevated intron retention in orthochromatic erythroblasts prior to enucleation. Dynamic regulation of late erythroblast IR parallels previously described splicing switches involving alternative exons. Gene ontology analysis revealed that the dynamic intron group is highly enriched in genes with RNA processing functions. Among these are several spliceosomal factors including SF3B1, a commonly mutated gene in myelodysplasia patients. We also identified several clusters of "developmentally stable" introns whose IR levels are not substantially modulated during erythropoiesis. Among this latter type are two clusters containing 294 introns that are enriched in functions related to metal ion binding. Key genes include mitoferrin-1 (SC25A37; IR~50%) and mitoferrin-2 (SLC25A28; IR~20-30%), mitochondrial iron importers essential for heme biosynthesis. We observed a correlation between splice site strength and percent IR among developmentally stable but not dynamic intron clusters, indicating that splicing regulatory mechanism(s) for the latter must require additional sequence features. A search for such features revealed that IR was significantly higher adjacent to alternative 'PTC' exons containing premature termination codons than it was adjacent to other exons; moreover, by direct RT-PCR analysis we discovered novel (unannotated) PTC exons in additional retained introns. The proposed role of PTC exons in IR is being studied experimentally using an array of minigene splicing reporter constructs. Finally, we noted that while specific IR events are erythroid specific, e.g., in the alpha spectrin gene SPTA1, computational analysis of public RNA-seq data demonstrated that most erythroblast IR events were also observed in granulocytes and in 16 other tissues surveyed by the human BodyMap project. Intron retention is likely to play critical roles in gene regulation in both hematological and non-hematological tissues. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 978-978
    Abstract: Abstract 978 Alternative pre-mRNA splicing plays a major role in development and differentiation by re-modeling the transcriptome to generate mRNAs that encode the biologically appropriate cell type-specific proteome. Earlier studies employing RT-PCR and exon microarrays demonstrated a small number of splicing changes during erythroid differentiation, one of which (in protein 4.1R) is critical for mechanical stability of the membrane skeleton. Here we report that the landscape of splicing changes executed during terminal erythropoiesis is far more extensive and highly dynamic, ultimately affecting the expression of many more proteins than previously recognized. Highly purified populations of FACS-sorted cells representing erythroblasts at distinct stages during terminal erythroid differentiation from proerythroblasts to orthochromatic erythroblasts of both human and mouse origin were used as the source of RNA for RNA-seq analysis. In total, hundreds of millions of sequence reads were obtained from three biological replicates for four (mouse) or five (human) cell populations, and reads were aligned to the Ensembl-annotated transcriptome using the Bowtie aligner. Transcript-level estimates were obtained using the streaming transcript abundance estimation tool, eXpress, expression of individual exons in “exon-inclusion” isoforms relative to total isoforms was represented as Ψ (psi), or percent spliced in, and statistical significance estimates adjusted for multiple comparisons by the Benjamini-Hochberg method. Thousands of alternative splicing events were predicted in genes with diverse functions in transcription, RNA processing, protein synthesis, membrane receptors, cytoskeletal structure, etc. Initial RT-PCR studies indicate that a high proportion of predicted alternative splicing events can be validated. Comparison of Ψ values across the differentiation series revealed that hundreds of alternative exons in erythroid transcripts exhibit substantial differences in splicing efficiency between proerythroblasts and orthrochromatic erythroblasts (ΔΨ 〉 20%), suggesting that their splicing efficiency is regulated. Both increases and decreases in exon splicing efficiency were observed, indicating that multiple splicing regulatory pathways are active and that both splicing enhancer and splicing silencer factors are involved in the regulation. Interestingly, some of the splicing switches introduce premature translation termination codons, leading us to hypothesize that splicing-coupled nonsense mediated decay may down-regulate expression of a class of erythroid transcripts. To begin exploring mechanisms that regulate the late erythroid alternative splicing program, we used the RNA-seq data to derive differentiation stage-specific expression profiles of known splicing factors. Major changes in the expression profile of many splicing regulators were observed. hnRNPA1 was strongly down-regulated in late erythroblasts, in concert with up-regulation of the protein 4.1R splicing switch it has been shown to inhibit. Because many other exons are up-regulated with similar kinetics, hnRNPA1 may be a general inhibitor of alternative splicing in early erythroblasts. In contrast, RNA-seq data indicate that several other splicing factors including MBNL1, a known splicing factor in muscle and brain whose activity is disturbed in myotonic dystrophy, are substantially up-regulated in late erythropoiesis. We conclude that a highly dynamic alternative splicing program in terminally differentiating erythroblasts, in conjunction with the better studied transcriptional program, plays a major role in regulating gene expression to insure synthesis of the appropriate constellation of proteins both quantitatively and qualitatively as the cells are remodeled in preparation for production of mature red cells. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 1664-1664
    Abstract: The protein 4.1R gene is regulated by complex pre-mRNA processing events that facilitate the synthesis of protein isoforms with different structure, function, and subcellular localization in red cells and various nucleated cell types. One of these events involves the stage-specific activation of exon 16 inclusion in erythroblasts, which mechanically stabilizes the membrane skeleton by increasing the protein’s affinity for spectrin and actin. Some of the splicing factor proteins and RNA regulatory elements responsible for this tissue-specific alternative splicing event have been defined. Here we focus on another RNA processing event, in the 5′ end of the transcript that can affect the structure and function of the membrane binding domain of protein 4.1R. We have shown that 4.1R transcripts originating at three far upstream alternative promoters/first exons splice differentially to alternative acceptor sites in exon 2′/2 in a manner that suggests strict coupling between transcription and alternative splicing events. A precisely analogous gene organization and RNA processing pattern has also been shown to occur in the paralogous 4.1B gene. Now we demonstrate that this coupling is evolutionarily conserved among several vertebrate classes from fish to mammals. The 4.1R and 4.1B genes from fish, bird, amphibian, and mammal genomes exhibit shared features including alternative first exons and differential splice acceptors in exon 2. In all cases, the 5′-most exon (exon 1A) splices exclusively to a weaker internal acceptor site in exon 2, skipping a short sequence designated as exon 2′ (17-33nt). Conversely, alternative first exons 1B and/or 1C always splice to the stronger first acceptor site, retaining exon 2′. These correlations are independent of tissue type or species of origin. Since exon 2′ contains a translation initiation site, this regulated splicing event generate protein isoforms with distinct N-termini. We propose that these 4.1 genes represent a physiologically relevant model system for mechanistic analysis of transcription-coupled alternative splicing. We have recently constructed a 9kb “minigene” that successfully reproduces the differential splicing patterns of exons 1A and 1B to exon 2′/2 in transfected cells. This minigene will facilitate identification of the determinants that guide coupling. Current experiments are testing the importance for proper splicing of the transcriptional promoter, first exon sequences, length and sequence of the intron, and sequence of a conserved element within exon 2′. Ultimately these studies should provide new insights into the mechanisms of coupling between far upstream, transcription-related processes and downstream alternative splicing.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Society of Hematology ; 2003
    In:  Blood Vol. 101, No. 1 ( 2003-01-01), p. 318-324
    In: Blood, American Society of Hematology, Vol. 101, No. 1 ( 2003-01-01), p. 318-324
    Abstract: The gene encoding ribosomal protein S19 (RPS19) has been shown to be mutated in 25% of the patients affected by Diamond-Blackfan anemia (DBA), a congenital erythroblastopenia. As the role of RPS19 in erythropoiesis is still to be defined, we performed studies on RPS19 expression during terminal erythroid differentiation. Comparative analysis of the genomic sequences of human and mouse RPS19genes enabled the identification of 4 conserved sequence elements in the 5′ region. Characterization of transcriptional elements allowed the identification of the promoter in the human RPS19 gene and the localization of a strong regulatory element in the third conserved sequence element. By Northern blot and Western blot analyses of murine splenic erythroblasts infected with the anemia-inducing strain Friend virus (FAV cells), RPS19 mRNA and protein expression were shown to decrease during terminal erythroid differentiation. We anticipate that these findings will contribute to further development of our understanding of the contribution of RPS19 to erythropoiesis.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2003
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Nature, Springer Science and Business Media LLC, Vol. 617, No. 7962 ( 2023-05-25), p. 764-768
    Abstract: Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown 1 to be highly efficient for discovery of genetic associations 2 . Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group 3 . Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling ( JAK1 ), monocyte–macrophage activation and endothelial permeability ( PDE4A ), immunometabolism ( SLC2A5 and AK5 ), and host factors required for viral entry and replication ( TMPRSS2 and RAB2A ).
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Nature, Springer Science and Business Media LLC, Vol. 619, No. 7971 ( 2023-07-27), p. E61-E61
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...