GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 50, No. 5 ( 2018-5), p. 645-651
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 863-863
    Abstract: Introduction: In experimental and epidemiological studies, alterations in several core circadian genes at the germline and tumor level have been associated with prostate cancer. The aim of this study was to investigate mRNA expression of circadian related genes in men with metastatic castration-resistant prostate cancer (mCRPC), and the association with survival. Methods: We assessed whole exome and RNA sequencing data from 317 mCRPC patients from the Stand Up to Cancer-Prostate Cancer Foundation (SU2C-PCF) database. Data were obtained from six sites: metastasis to bone (n=107; n=65 deaths), lymph node (n=129; n=88 deaths), liver (n=42; n=35 deaths), lung (n=6; n=3 deaths), and other soft tissue (n=26; n=20 deaths), as well as primary prostate (n=7; n=5 deaths) over a median follow-up of 71.8 months. We evaluated expression of twelve core circadian genes (ARNTL, CLOCK, CRY1, CRY2, CSNK1E, NR1D1, NPAS2, PER1, PER2, PER3, RORA, TIMELESS) as transcripts per million (TPM). We used the correlation of correlations method to estimate inter-gene correlations between tissue. Unpaired Wilcoxon rank sum tests compared circadian expression differences with tumor mutations in AR and p53, two of the most common genomic alterations in mCRPC. We conducted multivariable Cox regression, overall and stratified by tissue type, to estimate hazard ratios (HRs) and 95% confidence intervals (95% CIs) for expression (modeled continuously) and overall survival, adjusted for age and PSA at diagnosis, Gleason, treatment, and histology. Results: Many genes showed low or negative correlation across tissues, with the greatest discordance in CSNK1E (μICC=0.10), and greatest concordance in TIMELESS (μICC=0.55). Lower expression of ARNTL was found in patients with alterations to both p53 and AR. Similarly, higher expression of PER2 and RORA was found in AR-/p53+, compared to those AR+ and AR-/p53-. Higher expression of TIMELESS was associated with risk of death overall and across all tissue sites (HRoverall: 1.02, 95% CI: 1.01-1.03). In liver, higher expression of CLOCK (HR: 0.22, 95% CI: 0.07 - 0.71) and CSNK1E (HR: 0.87, 95% CI: 0.76 - 1.00), and lower expression of CRY1 (HR: 1.62, 95% CI: 1.16 - 2.26) was associated with a lower risk of death. Higher expression of CRY2 (HR: 1.25, 95% CI: 1.02 - 1.53) in liver, but lower expression in bone (HR: 0.95, 95% CI: 0.90 - 1.00) was associated with an increased risk of death. We found no association between ARNTL, NR1D1, NPAS2, PER3, or RORA and survival in any metastatic site. Conclusion: Our results show that circadian gene expression is altered in tissue from mCRPC patients, with substantial heterogeneity in circadian related expression patterns between metastatic tissue sites. These results support prior research on the role of circadian gene expression, particularly CRY1 and CLOCK, and outcomes in localized prostate cancer. Citation Format: Benjamin D. Booker, Konrad H. Stopsack, Travis A. Gerke, Kathryn Penny, Philip W. Kantoff, Lorelei A. Mucci, Sarah C. Markt, PCF/SU2C International Prostate Cancer Dream Team. Circadian gene expression in metastatic sites and association with survival in metastatic castration-resistant prostate cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 863.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2021
    In:  Cancer Discovery Vol. 11, No. 5 ( 2021-05-01), p. 1118-1137
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 11, No. 5 ( 2021-05-01), p. 1118-1137
    Abstract: Resistance to androgen receptor (AR) blockade in castration-resistant prostate cancer (CRPC) is associated with sustained AR signaling, including through alternative splicing of AR (AR-SV). Inhibitors of transcriptional coactivators that regulate AR activity, including the paralog histone acetyltransferase proteins p300 and CBP, are attractive therapeutic targets for lethal prostate cancer. Herein, we validate targeting p300/CBP as a therapeutic strategy for lethal prostate cancer and describe CCS1477, a novel small-molecule inhibitor of the p300/CBP conserved bromodomain. We show that CCS1477 inhibits cell proliferation in prostate cancer cell lines and decreases AR- and C-MYC–regulated gene expression. In AR-SV–driven models, CCS1477 has antitumor activity, regulating AR and C-MYC signaling. Early clinical studies suggest that CCS1477 modulates KLK3 blood levels and regulates CRPC biopsy biomarker expression. Overall, CCS1477 shows promise for the treatment of patients with advanced prostate cancer. Significance: Treating CRPC remains challenging due to persistent AR signaling. Inhibiting transcriptional AR coactivators is an attractive therapeutic strategy. CCS1477, an inhibitor of p300/CBP, inhibits growth and AR activity in CRPC models, and can affect metastatic CRPC target expression in serial clinical biopsies. See related commentary by Rasool et al., p. 1011. This article is highlighted in the In This Issue feature, p. 995
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 2807-2807
    Abstract: Background: ERBB signaling is implicated in castration resistant prostate cancer (CRPC), but so far clinical trials of ERBB targeting drugs failed to demonstrate antitumor activity. We elected to re-investigate ERBB receptors in endocrine treatment-resistant lethal PC, hypothesizing that targeting ERBB receptors merits further evaluation in metastatic CRPC (mCRPC). Design: We analyzed matching, same-patient, formalin-fixed paraffin-embedded (FFPE) treatment-naïve, castration-sensitive PC (CSPC) samples (n=88), and mCRPC biopsies (n=51), from patients treated at The Royal Marsden Hospital, UK. Samples were stained for HER2 and HER3 protein, by immunohistochemistry (IHC), data was generated through digital image analysis and results were analyzed against clinical characteristics and outcome data. Moreover, we treated HER3 high (CP50) and low (CP142) expressing patient derived xenograft (PDX) models with anti-HER3 antibody-drug conjugate (HER3-ADC) U3-1402 (10mg/Kg), IgG-ADC (MAAA-9289, 10mg/Kg), anti-HER3 antibody Patritumab (U3-1287, 10mg/Kg) and 10mM acetate buffer-5% sorbitol-pH 5.5 as vehicle control, in vitro and in vivo. In vitro cell growth inhibitory activity was monitored for 7-days with endpoint assay luminescence. In vivo efficacy was evaluated comparing tumor volumes, measured every 2-3 days. Statistical significance was analyzed using ANOVA with Dunnett’s multiple comparisons correction test. Results: Membranous HER2 (mHER2) and HER3 (mHER3) proteins were detectable in both CSPC and mCRPC biopsies, with HER3 being highly expressed in many tumors. The median optical density (OD) for mHER3 expression at diagnosis was 2958.0; PC with high mHER3 expression ( & gt; median OD; n=44) had a significantly shorter median time to CRPC (20.3 vs 14.2 months; p=0.016) and worse overall survival (OS) (79.0 vs 48.8 months; p=0.04) compared to CSPC with low mHER3 (≤ median; n=44). mHER2 staining did not associate with outcome. U3-1402 demonstrated in vivo potent and sustained antitumor activity in CP50, without inducing any body weight loss or apparent toxicity. Additionally, no tumor regrowth was observed up to 60-days following the end of dosing. This anti-HER3-ADC had minimal antitumor activity in CP142, highlighting the relevance of high HER3 expression as a functional therapeutic target. Conclusion: HER3 is commonly expressed in advanced PC and has clinical relevance in this setting. Our data indicate that HER3 is a valid target for clinical trials for men suffering from high HER3 expressing advanced PC. Citation Format: Susana Miranda, Veronica Gil, Ruth Riisnaes, Bora Gurel, Mariantonietta D’Ambrosio, Alessandro Vasciaveo, Mateus Crespo, Ana Ferreira, Daniela Brina, Martina Troiani, Adam Sharp, Beshara Sheehan, Rossitza Christova, George Seed, Ines Figueiredo, Maryou Lambros, David Dolling, Jan Rekowski, Abdullah Alajati, Matthew Clarke, Rita Pereira, Penny Flohr, Gemma Fowler, Gunther Boysen, Semini Sumanasuriya, Diletta Bianchini, Pasquale Rescigno, Caterina Aversa, Nina Tunariu, Christina Guo, Alec Paschalis, Claudia Bertan, Lorenzo Buroni, Jian Ning, Suzanne Carreira, Paul Workman, Amanda Swain, Andrea Califano, Michael M. Shen, Andrea Alimonti, Antje Neeb, SU2C/PCF International Prostate Cancer Dream Team, Jonathan Welti, Wei Yuan, Johann de Bono. HER3 is an actionable target in advanced prostate cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 2807.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 51, No. 7 ( 2019-7), p. 1194-1194
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 24 ( 2021-12-15), p. 6207-6218
    Abstract: It has been recognized for decades that ERBB signaling is important in prostate cancer, but targeting ERBB receptors as a therapeutic strategy for prostate cancer has been ineffective clinically. However, we show here that membranous HER3 protein is commonly highly expressed in lethal prostate cancer, associating with reduced time to castration resistance (CR) and survival. Multiplex immunofluorescence indicated that the HER3 ligand NRG1 is detectable primarily in tumor-infiltrating myelomonocytic cells in human prostate cancer; this observation was confirmed using single-cell RNA sequencing of human prostate cancer biopsies and murine transgenic prostate cancer models. In castration-resistant prostate cancer (CRPC) patient-derived xenograft organoids with high HER3 expression as well as mouse prostate cancer organoids, recombinant NRG1 enhanced proliferation and survival. Supernatant from murine bone marrow–derived macrophages and myeloid-derived suppressor cells promoted murine prostate cancer organoid growth in vitro, which could be reversed by a neutralizing anti-NRG1 antibody and ERBB inhibition. Targeting HER3, especially with the HER3-directed antibody–drug conjugate U3-1402, exhibited antitumor activity against HER3-expressing prostate cancer. Overall, these data indicate that HER3 is commonly overexpressed in lethal prostate cancer and can be activated by NRG1 secreted by myelomonocytic cells in the tumor microenvironment, supporting HER3-targeted therapeutic strategies for treating HER3-expressing advanced CRPC. Significance: HER3 is an actionable target in prostate cancer, especially with anti-HER3 immunoconjugates, and targeting HER3 warrants clinical evaluation in prospective trials.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature, Springer Science and Business Media LLC, Vol. 546, No. 7660 ( 2017-6), p. 671-675
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: JCO Precision Oncology, American Society of Clinical Oncology (ASCO), , No. 4 ( 2020-11), p. 1167-1179
    Abstract: Metastatic castration-resistant prostate cancer (mCRPC) with low androgen receptor (AR) and without neuroendocrine signaling, termed double-negative prostate cancer (DNPC), is increasingly prevalent in patients treated with AR signaling inhibitors and is in need of new biomarkers and therapeutic targets. METHODS Candidate genes enriched in DNPC were determined using differential gene expression analysis of discovery and validation cohorts of mCRPC biopsies. Laboratory studies were carried out in human mCRPC organoid cultures, prostate cancer (PCa) cell lines, and mouse xenograft models. Epigenetic studies were carried out in a rapid autopsy cohort. RESULTS Dickkopf-1 (DKK1) expression is increased in DNPC relative to prostate-specific antigen (PSA)–expressing mCRPC in the Stand Up to Cancer/Prostate Cancer Foundation discovery cohort (11.2 v 0.28 reads per kilobase per million mapped reads; q 〈 0.05; n = 117) and in the University of Washington/Fred Hutchinson Cancer Research Center cohort (9.2 v 0.99 fragments per kilobase of transcript per million mapped reads; P 〈 .0001). DKK1 expression can be regulated by activated Wnt signaling in vitro and correlates with activating canonical Wnt signaling mutations and low PSA mRNA in mCRPC biopsies ( P 〈 .05). DKK1 hypomethylation was associated with increased DKK1 mRNA expression (Pearson r = −0.66; P 〈 .0001) in a rapid autopsy cohort (n = 7). DKK1-high mCRPC biopsies are infiltrated with significantly higher numbers of quiescent natural killer (NK) cells ( P 〈 .005) and lower numbers of activated NK cells ( P 〈 .0005). Growth inhibition of the human PCa model PC3 by the anti-DKK1 monoclonal antibody DKN-01 depends on the presence of NK cells in a severe combined immunodeficient xenograft mouse model. CONCLUSION These results support DKK1 as a contributor to the immunosuppressive tumor microenvironment of DNPC. These data have provided the rationale for a clinical trial targeting DKK1 in mCRPC (ClinicalTrials.gov identifier: NCT03837353 ).
    Type of Medium: Online Resource
    ISSN: 2473-4284
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2020
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...