GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Plants, MDPI AG, Vol. 11, No. 7 ( 2022-03-24), p. 871-
    Abstract: The photoperiod plays a critical role in the control of flowering timing in soybean (Glycine max (L.) Merr.) with long days increasing the time to flowering. Early flowering cultivars have been developed from breeding programs for environments with long photoperiods; however, this effect is challenging to isolate in field experiments because of other environmental influences. Our experiment examined the effect of photoperiod on the node appearance rate and time to flower for 13 early maturing soybean cultivars ranging in maturity group (MG) between 000.9 and 1.3. Growth chambers were programmed to 14, 15, 16, and 17 h photoperiods and temperature was kept at 25 °C. The date of emergence and main stem node appearance were recorded until flowering. The node appearance rate was slowest for the first node and increased thereafter. All cultivars required more time to flowering in the longer photoperiod treatments and the later rated MG had the greatest sensitivity to photoperiod. A delay in time to flower from a longer photoperiod can delay maturity and expose the crop to fall frost that can reduce seed yield and quality. Understanding and documentation of soybean photoperiod sensitivity will help plant breeders develop suitable cultivars for environments with long photoperiods.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Astrophysical Journal, American Astronomical Society, Vol. 948, No. 2 ( 2023-05-01), p. 71-
    Abstract: Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counterintuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfvén waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α = 2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed 〉 600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: preflare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α = 1.63 ± 0.03. This is below the critical threshold, suggesting that Alfvén waves are an important driver of coronal heating.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...