GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Polymers, MDPI AG, Vol. 14, No. 24 ( 2022-12-15), p. 5501-
    Abstract: The main concern of materials designed for firefighting protective clothing applications is heat protection, which can be experienced from any uncomfortably hot objects or inner spaces, as well as direct contact with flame. While textile fibers are one of the most important components of clothing, there is a constant need for the development of innovative fire-retardant textile fibers with improved thermal characteristics. Lately, inherently fire-resistant fibers have become very popular to provide better protection for firefighters. In the current study, the electrospinning technique was applied as a versatile method to produce micro-/nano-scaled non-woven fibrous membranes based on various ratios of a poly(ether-ether-ketone) (PEEK) and a phosphorus-containing polyimide. Rheological measurements have been performed on solutions of certain ratios of these components in order to optimize the electrospinning process. FTIR spectroscopy and scanning electron microscopy were used to investigate the chemical structure and morphology of electrospun nanofiber membranes, while thermogravimetric analysis, heat transfer measurements and differential scanning calorimetry were used to determine their thermal properties. The water vapor sorption behavior and mechanical properties of the optimized electrospun nanofiber membranes were also evaluated.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Polymers, MDPI AG, Vol. 16, No. 11 ( 2024-05-25), p. 1503-
    Abstract: Composite membranes based on a polymer mixture solution of quaternized polysulfone (PSFQ), cellulose acetate phthalate (CAP), and polyvinylidene fluoride (PVDF) for biomedical applications were successfully obtained through the electrospinning technique. To ensure the polysulfone membranes’ functionality in targeted applications, the selection of electrospinning conditions was essential. Moreover, understanding the geometric characteristics and morphology of fibrous membranes is crucial in designing them to meet the performance standards necessary for future biomedical applications. Thus, the viscosity of the solutions used in the electrospinning process was determined, and the morphology of the electrospun membranes was examined using scanning electron microscopy (SEM). Investigations on the surfaces of electrospun membranes based on water vapor sorption data have demonstrated that their surface properties dictate their biological ability more than their specific surfaces. Furthermore, in order to understand the different macromolecular rearrangements of membrane structures caused by physical interactions between the polymeric chains as well as by the orientation of functional groups during the electrospinning process, Fourier transform infrared (FTIR) spectroscopy was used. The applicability of composite membranes in the biomedical field was established by bacterial adhesion testing on the surface of electrospun membranes using Escherichia coli and Staphylococcus aureus microorganisms. The biological experiments conducted establish a foundation for future applications of these membranes and validate their effectiveness in specific fields.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2024
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Polymer Testing, Elsevier BV, Vol. 71 ( 2018-10), p. 285-295
    Type of Medium: Online Resource
    ISSN: 0142-9418
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 2015673-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Informa UK Limited ; 2015
    In:  Journal of Macromolecular Science, Part B Vol. 54, No. 9 ( 2015-09-02), p. 1092-1104
    In: Journal of Macromolecular Science, Part B, Informa UK Limited, Vol. 54, No. 9 ( 2015-09-02), p. 1092-1104
    Type of Medium: Online Resource
    ISSN: 0022-2348 , 1525-609X
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2015
    detail.hit.zdb_id: 2027386-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Water, MDPI AG, Vol. 14, No. 24 ( 2022-12-16), p. 4105-
    Abstract: The present work studies the efficiency of new innovative quaternized polysulfone (PSFQ)/ionic liquid (IL) membranes in the treatment process of water containing cadmium ions (Cd(II)). The design and development of the polysulfone membranes with morphology tailored by the use of ILs (Cyphos 101 IL and Aliquat 336) was based on the rheological study of the casting solutions that dictated the optimal compositions of ILs and facilitated the preparation of the membranes for performance tests. Thus, according to the variation of the rheological functions obtained (G′, G″), it was demonstrated that Aliquat 336 has better compatibility with PSFQ, facilitating the workability of the solution and improving the final properties of the membranes relative to Cyphos 101 IL. However, the casting solutions consisting of 5 wt.% Ph-IL and 15 wt.% Am-IL content produce membranes with superior physico-chemical properties. Also, the surface chemistry and morphology analysis of the membranes obtained were investigated in order to understand the relationship between the PSFQ and ILs, as well as their surface properties, as indicators for their future applications. Additionally, the results obtained from the kinetic studies regarding Cd(II) removal from aqueous solutions and the amount of Cd(II) accumulated onto the membranes showed that the ILs enhance the filtration efficiency of the membranes studied and underlined the positive effect of IL in the structure of the quaternized polysulfone membranes. A content of 15 wt.% Aliquat 336 in PSFQ membranes shows the best properties for Cd(II) removal from aqueous solutions; the maximum amount of Cd(II) accumulated on the membrane studied was 3300 mg/m2. This behaviour was maintained for two cycles of washing/filtration, and then the efficiency decreased by 20%. The results obtained showed that the membranes functionalized with ionic liquid could be used efficiently in the treatment of water containing trace concentration of cadmium.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Polymer Composites, Wiley, Vol. 33, No. 11 ( 2012-11), p. 2072-2083
    Type of Medium: Online Resource
    ISSN: 0272-8397
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2012
    detail.hit.zdb_id: 1475935-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 9 ( 2022-04-25), p. 4721-
    Abstract: Starting from the bactericidal properties of functionalized polysulfone (PSFQ) and due to its excellent biocompatibility, biodegradability, and performance in various field, cellulose acetate phthalate (CAP) and polyvinyl alcohol (PVA), as well as their blends (PSFQ/CAP and PSFQ/PVA), have been tested to evaluate their applicative potential in the biomedical field. In this context, because the polymer processing starts from the solution phase, in the first step, the rheological properties were followed in order to assess and control the structural parameters. The surface chemistry analysis, surface properties, and antimicrobial activity of the obtained materials were investigated in order to understand the relationship between the polymers’ structure–surface properties and organization form of materials (fibers and/or films), as important indicators for their future applications. Using the appropriate organization form of the polymers, the surface morphology and performance, including wettability and water permeation, were improved and controlled—these being the desired and needed properties for applications in the biomedical field. Additionally, after antimicrobial activity testing against different bacteria strains, the control of the inhibition mechanism for the analyzed microorganisms was highlighted, making it possible to choose the most efficient polymers/blends and, consequently, the efficiency as biomaterials in targeted applications.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Materials, MDPI AG, Vol. 14, No. 21 ( 2021-11-03), p. 6627-
    Abstract: The current paper presents a strategic way to design and develop materials with properties adapted for various applications from biomedicine to environmental applications. In this context, blends of (hydroxypropyl)methyl cellulose (HPMC) and poly(vinylpyrrolidone) (PVP) were obtained to create new materials that can modulate the membrane properties in various fields. Thus, to explore the possibility of using the HPMC/PVP system in practical applications, the solubility parameters in various solvents were initially evaluated using experimental and theoretical approaches. In this frame, the study is aimed at presenting the background and steps of preliminary studies to validate the blends behavior for targeted application before being designed. Subsequently, the analysis of the behavior in aqueous dilute solution of HPMC/PVP blend offers information about the conformational modifications and interactions manifested in system depending on the structural characteristics of polymers (hydrophilicity, flexibility), polymer mixtures composition, and used solvent. Given this background, based on experimental and theoretical studies, knowledge of hydrodynamic parameters and analysis of the optimal compositions of polymer mixtures are essential for establishing the behavior of obtained materials and validation for most suitable applications. Additionally, to guarantee the quality and functionality of these composite materials in the targeted applications, e.g., biomedical or environmental, the choice of a suitable solvent played an important role.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Nanomaterials, MDPI AG, Vol. 12, No. 15 ( 2022-08-04), p. 2685-
    Abstract: The development of intelligent materials for protective equipment applications is still growing, with enormous potential to improve the safety of personnel functioning in specialized professions, such as firefighters. The design and production of such materials by the chemical modification of biodegradable semisynthetic polymers, accompanied by modern manufacturing techniques such as electrospinning, which may increase specific properties of the targeted material, continue to attract the interest of researchers. Phosphorus-modified poly(vinyl alcohol)s have been, thus, synthesized and utilized to prepare environmentally friendly electrospun mats. Poly(vinyl alcohol)s of three different molecular weights and degrees of hydrolysis were phosphorylated by polycondensation reaction in solution in the presence of phenyl dichlorophosphate in order to enhance their flame resistance and thermal stability. The thermal behavior and the flame resistance of the resulting phosphorus-modified poly(vinyl alcohol) products were investigated by thermogravimetric analysis and by cone calorimetry at a micro scale. Based on the as-synthesized phosphorus-modified poly(vinyl alcohol)s, electrospun mats were successfully fabricated by the electrospinning process. Rheology studies were performed to establish the optimal conditions of the electrospinning process, and scanning electron microscopy investigations were undertaken to observe the morphology of the phosphorus-modified poly(vinyl alcohol) electrospun mats.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Wiley ; 2015
    In:  Journal of Applied Polymer Science Vol. 132, No. 18 ( 2015-05-10)
    In: Journal of Applied Polymer Science, Wiley, Vol. 132, No. 18 ( 2015-05-10)
    Abstract: Surface wettability trends, and blood component adhesion of some cellulose acetate phthalate/hydroxypropyl cellulose blend films are analyzed in view of adapting the system to biomedical applications. The results show that intermediate blend compositions of the corresponding films influence the surface tension parameters—controlled by the interactions occurring in the system. Increasing hydrophobicity and, implicitly, decreasing the polar surface tension components, are correlated with the adhesion/cohesion of blood components and plasma proteins. Thus, the work of spreading proteins on the hydrophobic blend surfaces indicated that albumin is not absorbed preferentially, while fibrinogen is characterized by a higher degree of adhesion on the surfaces, and also that selective adsorption of plasma proteins modifies blood compatibility. In addition, the obtained results and the ascertained antimicrobial activity of the studied blends contribute to the development of new applications in the biomedical field. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 41932
    Type of Medium: Online Resource
    ISSN: 0021-8995 , 1097-4628
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 1491105-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...