GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Rockefeller University Press ; 2004
    In:  The Journal of Experimental Medicine Vol. 199, No. 1 ( 2004-01-05), p. 125-130
    In: The Journal of Experimental Medicine, Rockefeller University Press, Vol. 199, No. 1 ( 2004-01-05), p. 125-130
    Abstract: Psoriasis is a type I–deviated disease characterized by the presence of interferon (IFN)-γ and multiple IFN-related inflammatory genes in lesions. Because interleukin (IL)-23 is now recognized to play a role in the recruitment of inflammatory cells in a T helper cell (Th)1-mediated disease, we examined psoriasis skin lesions for production of this newly described cytokine. IL-23 is composed of two subunits: a unique p19 subunit and a p40 subunit shared with IL-12. We found a reliable increase in p19 mRNA by quantitative reverse transcription polymerase chain reaction in lesional skin compared with nonlesional skin (22.3-fold increase; P = 0.001). The p40 subunit, shared by IL-12 and IL-23, increased by 11.6-fold compared with nonlesional skin (P = 0.003), but the IL-12 p35 subunit was not increased in lesional skin. IL-23 was expressed mainly by dermal cells and increased p40 immunoreactivity was visualized in large dermal cells in the lesions. Cell isolation experiments from psoriatic tissue showed strong expression of p19 mRNA in cells expressing monocyte (CD14+ CD11c+ CD83−) and mature dendritic cell (DC) markers (CD14− CD11c+ CD83+), whereas in culture, the mRNAs for p40 and p19 were strongly up-regulated in stimulated monocytes and monocyte-derived DCs, persisting in the latter for much longer periods than IL-12. Our data suggest that IL-23 is playing a more dominant role than IL-12 in psoriasis, a Th1 type of human inflammatory disease.
    Type of Medium: Online Resource
    ISSN: 1540-9538 , 0022-1007
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2004
    detail.hit.zdb_id: 1477240-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of the Neurological Sciences, Elsevier BV, Vol. 239, No. 1 ( 2005-12), p. 81-93
    Type of Medium: Online Resource
    ISSN: 0022-510X
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2005
    detail.hit.zdb_id: 1500645-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 8_Supplement ( 2013-04-15), p. 1413-1413
    Abstract: Objective: Eribulin mesylate (ERI) is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B and an inhibitor of microtubule dynamics. The objective of this study was to examine the effect of ERI on tumor vasculature with immunohistchemical (IHC) analysis and gene expression profiling (GEP) in normal host cells, such as endothelial cells and vascular mural cells within tumor microenvironments in human BCC xenograft models Methods: Anti-tumor activity of ERI was examined at doses of 1.5 and 3.0 mg/kg, i.v. at day 1, in human BCC MX-1, MDA-MB-231 and MDA-MB-453 sc xenografts in nude mice. For IHC and GEP analysis, tumor tissues were collected at day 4 and day 8. IHC analysis was performed using mouse CD31 antibody to stain endothelial cells. Microvessel density (MVD) and vessel perimeter were determined by using Aperio Image Scope. GEP analysis for mouse host and human tumor cells within tumor tissues was done by using mouse and human TaqMan Low Density Arrays (TLDAs) consisting of a set of 92 genes related to angiogenesis, metastasis/EMT and cell differentiation signal pathways. Results shows % of non-treatment group (NT). Results: ERI showed significant anti-tumor activity against all three human BCC xenografts in a dose dependent manner. IHC analysis showed that ERI altered morphology of tumor vasculature day 8 after treatments and increased number of vessels with small size of perimeter ( & lt;300um), but decreased large size of vessels ( & gt;300um) in both MX-1 and MDA-MB-231 xenograft models (p & lt;0.05 vs NT). ERI altered morphology of tumor vascular, which resembled normalized vasculature in two of triple negative (TN) breast cancer xenograft models. Next, GEP analysis revealed that in three human BCCs xenograft models, expression of endothelial (CD31, CD105) and pericyte markers (αSMA, NG2) were decreased in host cells 4 days after treatment of ERI (1.5mg/kg). ERI also decreased the expression of angiogenesis regulating genes (VEGF; 22.6%, Dll4; 30.4%, Notch4; 42.6%, Tie2; 63.4%) and genes in the EMT/metastasis pathway (TGFB1, ZEB1 and TWIST) in two of TN BCC (65.1%, 65.0%, 56.5% in MX-1 and 41.6%, 55.8%, 46.1% in MDA-MB-231, respectively) models compared to NT (p & lt;0.05), suggesting anti-EMT activity in host tissues within tumors. Conclusions: ERI induced re-modeling of tumor vasculature in human BCC xenograft models. GEP related to angiogenesis and EMT/metastasis pathway was significantly affected with ERI treatment in host cells under tumor microenvironments. ERI might cause remodeling of tumor vasculature by regulating GEP in host cells. Further investigation may be warranted to examine if the activity of ERI against host cells in tumor tissues contributed to anti-tumor activity of ERI. Citation Format: Junji Matsui, Osamu Toyama, Mitsuhiro Ino, Taro Semba, Mai Uesugi, Hiroki Muto, Judith L. Oestreicher, Kentaro Takahashi, Kentaro Matsuura, Yoshiaki Sato, Taisuke Uehara, Takayuki Kimura, Hideki Watanabe, Yoichi Ozawa, Makoto Asano, Yusuke Adachi, Ken Aoshima, Yasuhiro Funahashi. Eribulin caused re-modeling of tumor vasculature altering gene expression profiling in angiogenesis and Epithelial Mesenchymal Transition (EMT) signaling pathway of host cells within human breast cancer cell (BCC) xenografts in nude mice. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 1413. doi:10.1158/1538-7445.AM2013-1413
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 8_Supplement ( 2013-04-15), p. 3830-3830
    Abstract: Objectives: Eribulin mesylate (ERI) is a simplified synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B. We examined effects of ERI and Paclitaxel (PTX) on blood vessel cells by gene expression profiling (GEP) in mono- and co-culture assays of pericytes and endothelial cells. Activity of ERI and PTX against cell growth inhibition and pericyte-driven in vitro angiogenesis was also studied. Methods: We first assessed IC50s of ERI and PTX in 4-day growth inhibition assay in isolated primary human brain vascular pericytes (HBVP) and human umbilical vein endothelial cells (HUVEC). Based on identified IC50s, cells were treated with 10X IC50s of ERI or PTX and GEP was analyzed at 24 h using either Affimetrix Human Genome U133 Plus 2.0 arrays or custom TaqMan Low Density Cards (TLDA) designed with 92 genes related to angiogenesis, metastasis/ Epithelial Mesenchymal Transition (EMT) and cell differentiation signal pathways. Inhibitory activity of drugs on the length of capillary-like networks was analyzed in co-culture of HUVEC with HBVP. Results: ERI and PTX inhibited cell growth of HBVP at IC50s of 1.2 and 3.1nM and HUVEC was more sensitive than HBVP by 1.9 and 3.3 fold in cell growth assay, respectively. In HUVEC, most genes were down-regulated by both ERI and PTX treatments, while in HBVP about equal number of genes were up- or down-regulated with microarray analysis. Interestingly, 63% affected genes in HUVECs overlapped for both treatments. In HBVPs, altered gene signatures were drug-dependent and an overlap was limited by 16%. ERI specifically affected genes in HIF1 and caveolar-mediated signaling pathways while PTX regulated genes in HER2, PI3K/AKT and HGF signaling pathways among others. We confirmed obtained altered GEP using TLDA and identified 42 significant genes differentially regulated by ERI and PTX in HBVP. To examine effects on pericyte-driven in vitro angiogenesis, we compared length of capillary-like networks in co-culture of HUVEC with HBVP. ERI disrupted capillary-like networks starting at about 2 nM, while PTX showed limited inhibitory activity by less than 50% even at 100-1000 nM for 4 days treatments. In co-culture assay, TLDA data showed decreased expression levels of angiogenesis-related genes DLL4 (14% compare to control), PDGFRB (70%) and metastasis/EMT-related genes ZEB1 (53%), TGFB3 (54 %), VIM (62 %) after treatment with 10X IC50s of ERI (p & lt;0.05). Conclusions: Endothelial cells and pericytes responded differently to ERI and PTX treatments and effects of ERI on GEP of pericytes were distinct from PTX. ERI inhibited pericyte-driven in vitro angiogenesis at sub nM using co-culture assay of HUVEC with HBVP. Further analysis of the role of ERI on GEP of pericytes and pericyte-driven angiogenesis in anti-tumor activity will be warranted. Citation Format: Sergei I. Agoulnik, Judith L. Oestreicher, Noel H. Taylor, Mai Uesugi, Hiroki Muto, Satoshi Kawano, Kentaro Takahashi, Kentaro Matsuura, Ken Aoshima, Junji Matsui, Yasuhiro Funahashi. Eribulin and Paclitaxel differentially affect gene expression profiling of blood vessel cells and in vitro angiogenesis in co-cultures of human endothelial cells with pericytes. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 3830. doi:10.1158/1538-7445.AM2013-3830
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...