GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2016
    In:  Cancer Research Vol. 76, No. 7_Supplement ( 2016-04-01), p. IA22-IA22
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 7_Supplement ( 2016-04-01), p. IA22-IA22
    Abstract: Pancreatic ductal adenocarcinoma (PDAC) is clinically still treated as a single disease. We have generated patient-derived models representing the recently identified quasi-mesenchymal, classical and exocrine-like PDAC subtypes, and report a two-marker set facilitating patient stratification by immunohistochemistry. The subtypes show significant differences in overall survival and drug sensitivity, with the exocrine-like subtype being resistant to the tyrosine kinase inhibitors erlotinib, dasatinib, as well as the chemotherapeutic paclitaxel. Highly expressed cytochrome P450 3A5 (CYP3A5) actively metabolizes these compounds in the exocrine-like subtype, and pharmacological or shRNA-mediated CYP3A5 inhibition sensitizes tumor cells in vivo. Additionally, we investigated the transcriptional network underlying the subtype-specific CYP3A5 expression. Hence, these data show that exocrine-like PDAC adopts a highly effective detoxification mechanism akin to that of hepatocytes. High expression of CYP3A5 in other tumor entities suggests this pathway as an important target to overcome drug resistance and to predict response to therapy with small molecule drugs. Citation Format: Elisa M. Noll, Elisa M. Noll, Christian Eisen, Christian Eisen, Elisa Espinet, Elisa Espinet, Albrecht Stenzinger, Wilko Weichert, Martin R. Sprick, Andreas Trumpp, Andreas Trumpp. CYP3A5 mediates resistance to small molecule inhibitors in a subtype of pancreatic ductal adenocarcinoma. [abstract]. In: Proceedings of the AACR Special Conference on Tumor Metastasis; 2015 Nov 30-Dec 3; Austin, TX. Philadelphia (PA): AACR; Cancer Res 2016;76(7 Suppl):Abstract nr IA22.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Pancreas, Ovid Technologies (Wolters Kluwer Health), Vol. 46, No. 3 ( 2017-03), p. 311-322
    Type of Medium: Online Resource
    ISSN: 0885-3177
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2017
    detail.hit.zdb_id: 2053902-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature Medicine, Springer Science and Business Media LLC, Vol. 22, No. 3 ( 2016-3), p. 278-287
    Type of Medium: Online Resource
    ISSN: 1078-8956 , 1546-170X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 1484517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 13_Supplement ( 2015-07-01), p. A61-A61
    Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with dismal prognosis (1, 2). Despite extensive research and the discovery of several promising drug candidates, little progress in PDAC treatment has been reported in the last years (3, 4). Two facts can be behind these disappointing results. In one hand, although PDAC is still clinically treated as a single disease, three distinct molecular subtypes (classical, quasi-mesenchymal and exocrine) were recently described based on expression profiling of microdissected epithelial tumor cells of PDAC samples (5). Interestingly, in vitro studies revealed differences in drug response of two of the proposed subtypes for which cell lines were available. These results highlight the importance of considering PDAC as a heterogeneous disease and point to the stratification of patients as a possible way to improve PDAC treatment response. On another hand, an additional reason behind the limited efficacy of PDAC treatment might be the tumor microenvironment. PDAC is the solid tumor with the highest stromal content, which can account for up to 90% of the total tumor mass. The PDAC microenvironment is known to actively affect tumorigenesis (6) and to impair drug delivery (7). Thus, rendering the PDAC microenvironment as an appealing therapeutic target to improve PDAC care (8). We have developed a novel workflow to efficiently generate patient-derived orthotopic xenografts (PDX) and serum-free cell cultures from primary resected PDAC tumors. The established primary cell lines comprise for first time all three described PDAC subtypes. Additionally, when re-injected into immunodeficient mice, these cells generate xenografts with high pathological similarity to the original patient tumor, including a prominent stromal presence. To explore the differences in the microenvironment associated to the individual PDAC subtypes we have now generated gene expression profiles for the stroma of a number of xenografts from our PDX model representing all three subtypes. Besides, RNA sequencing from different sub-populations isolated from fresh primary human PDAC tumors (as separated by fluorescent activated cell sorting according to surface markers) may reveal interesting interactions between the different tumor compartments. We have developed a set of immunohistochemical markers to identify the PDAC-subtypes that can be used in patient paraffin sections. Hence, the RNAseq data of the different tumor populations can be also easily studied in the context of the different subtypes. We believe that these approaches will shed some light on how different stromal expression patterns are interconnected with different epithelial expression profiles and vice versa, and how this information can be ultimately exploited for patient stratification and therapy. 1. Hidalgo M. Pancreatic cancer. N Engl J Med 2010 2. Vincent A et al. Pancreatic cancer. Lancet, 2011 3. Werner J et al. Advanced-stage pancreatic cancer: therapy options. Nature Reviews Clinical Oncology, 2013 4. Hidalgo M et al. Translational therapeutic opportunities in ductal adenocarcinoma of the pancreas. Clin Cancer Res, 2012 5. Collisson EA et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med, 2011 6. Feig C et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblastssynergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA, 2013 7. Provenzano PP et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell, 2012 8. Neesse A et al. Emerging concepts in pancreatic cancer medicine: targeting the tumor stroma. Onco Targets Ther, 2013 Citation Format: Elisa Espinet Espinet, Christian Eisen, Elisa M. Noll, Vanessa Vogel, Corinna Klein, Zuguang Gu, Matthias Schlesner, Tobias Bauer, Nathalia Giese, Roland Eils, Jens Werner, Wilko Weichert, Martin R. Sprick, Andreas Trumpp. Exploring the PDAC-subtype-associated microenvironment in PDX models and patients. [abstract]. In: Proceedings of the AACR Special Conference on Pancreatic Cancer: Innovations in Research and Treatment; May 18-21, 2014; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2015;75(13 Suppl):Abstract nr A61.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 24_Supplement ( 2016-12-15), p. B77-B77
    Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive disease with poor prognosis. Treatment with gemcitabine, the FOLFIRINOX scheme or nab-paclitaxel offer only a modest increase in overall survival. For a number of other carcinomas, tumor subtypes have been uncovered that allow the use of targeted therapies. Although subtypes of PDAC were described, this malignancy is clinically still treated as a single disease. We established patient-derived models representing the full spectrum of previously identified quasi-mesenchymal (QM-PDA), classical and exocrine-like PDAC subtypes, and identified two markers—HNF1A and KRT81—that enable stratification of tumors into different subtypes by immunohistochemistry. Patients bearing tumors of these subtypes show significant differences in overall survival and their tumors differ in drug sensitivity, with the exocrine-like subtype being resistant to tyrosine kinase inhibitors and paclitaxel. The xenobiotic enzyme, cytochrome P450 3A5 (CYP3A5), metabolizes these compounds in tumors of the exocrine-like subtype, and pharmacological or short hairpin RNA (shRNA)-mediated CYP3A5 inhibition sensitizes tumor cells to these drugs. Additionally, retrospective analysis of a large patient cohort confirmed that CYP3A5 is predominantly found in those patient tumors classified as exocrine-like. Whereas the hepatocyte nuclear factor 4, alpha (HNF4A) controls basal expression of CYP3A5, drug-induced CYP3A5 upregulation is mediated by the nuclear receptor NR1I2. Interfering with these regulatory mechanisms may provide an alternative approach to suppress the CYP3A5 pathway. CYP3A5 also contributes to acquired drug resistance in QM-PDA and classical PDAC, and is highly expressed in several additional malignancies. These findings designate CYP3A5 as predictor of therapy response and as a tumor cell-autonomous detoxification mechanism that must be overcome to prevent drug resistance. Citation Format: Elisa M. Noll, Christian Eisen, Albrecht Stenzinger, Elisa Espinet, Alexander Muckenhuber, Corinna Klein, Vanessa Vogel, Bernd Klaus, Wiebke Nadler, Christoph Rösli, Christian Lutz, Michael Kulke, Jan Engelhardt, Franziska Zickgraf, Octavio Espinosa, Matthias Schlesner, Xiaoqi Jiang, Annette Kopp-Schneider, Peter Neuhaus, Marcus Bahra, Bruno V. Sinn, Roland Eils, Nathalia A. Giese, Thilo Hackert, Oliver Strobel, Jens Werner, Markus W. Büchler, Wilko Weichert, Andreas Trumpp, Martin R. Sprick.{Authors}. CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma. [abstract]. In: Proceedings of the AACR Special Conference on Pancreatic Cancer: Advances in Science and Clinical Care; 2016 May 12-15; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2016;76(24 Suppl):Abstract nr B77.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 13_Supplement ( 2015-07-01), p. A69-A69
    Abstract: PDAC is a highly aggressive disease with dismal prognosis [1, 2]. Despite extensive research and the discovery of several drug candidates, little progress has been reported since the approval of gemcitabine and erlotinib [1] . Moreover, recent trials with targeted therapies have shown only limited or no benefit [1, 2]. For a number of other carcinomas, tumor subclasses have been uncovered that allow the use of targeted therapies. The mutational landscape of PDAC is complex and heterogeneous, raising the question whether subclasses also exist in PDAC [3] . Collisson et al. described three PDAC subtypes that were identified based on their gene-expression profiles: The classical, the quasi-mesenchymal and the exocrine-like subtype [4]. However, not all subtypes could be identified in the previously available model systems. We have established a novel patient-derived model system that allows the analysis of these three human PDAC subtypes in vitro and in vivo. Hence, we provide a systematic workflow to propagate human PDAC in orthotopic xenografts and to derive tumor-initiating primary cell lines of all three PDAC subtypes. HNF-1 and Keratin 81 were identified as markers for subtype stratification by immunohistochemistry. Application of this two-marker set on a 258 large patient cohort confirmed a predominantly non-overlapping staining and revealed a significant difference in overall survival across the three subtypes. Furthermore, a drug screen uncovered subtype-specific drug sensitivities towards a number of drugs, including gemcitabine and dasatinib. Notably, the exocrine-like subtype was resistant towards all compounds tested. Thus, we aimed to identify the underlying cause of the observed drug resistance. Molecular analysis including gene set enrichment analysis (GSEA) allowed us to identify a putative novel mechanism of drug resistance. Analysis by qRT-PCR and Western blot demonstrated the enhanced expression of several genes mediating this mechanism particularly in the exocrine-like subtype in vitro and in vivo. These findings led to the identification of a novel protein target central to this mechanism. Additionally, retrospective immunohistochemical analysis of a large patient cohort confirmed that this target is predominantly found in those patient tumors classified as exocrine-like. Hence, we hypothesized that the observed strong activation of this mechanism in the exocrine-like PDAC subtype could be responsible for the drug resistance observed in this subclass. In line with this, functional inhibition of this mechanism resulted in increased drug sensitivity in the exocrine-like subtype. Hence, our findings may ultimately advance personalized treatment by applying novel marker-based patient selection strategies in combination with tailored drug use, a strategy which will be presented in more detail at the conference. [1] Hidalgo, M. Pancreatic cancer. The New England journal of medicine. 362, 1605-1617, doi:10.1056/NEJMra0901557 (2010). [2] Vincent, A., Herman, J., Schulick, R., Hruban, R. H. & Goggins, M. Pancreatic cancer. Lancet. 378, 607-620, doi:10.1016/S0140-6736(10)62307-0 (2011). [3] Jones, S. et al. Core signalling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 321, 1801-1806, doi:10.1126/science.1164368 (2008). [4] Collisson, E. A. et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nature medicine. 17, 500-503, doi:10.1038/nm.2344 (2011). Citation Format: Elisa M. Noll, Christian Eisen, Elisa Espinet, Vanessa Vogel, Corinna Klein, Albrecht Stenzinger, Franziska Zickgraf, Peter Neuhaus, Marcus Bahra, Bruno V. Sinn, Christian Lutz, Michael Kulke, Andreas Pahl, Nathalia A. Giese, Oliver Strobel, Jens Werner, Wilko Weichert, Andreas Trumpp, Martin R. Sprick. A novel mechanism mediates drug resistance in the exocrine-like pancreatic ductal adenocarcinoma (PDAC) subtype. [abstract]. In: Proceedings of the AACR Special Conference on Pancreatic Cancer: Innovations in Research and Treatment; May 18-21, 2014; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2015;75(13 Suppl):Abstract nr A69.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. LB-120-LB-120
    Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with poor prognosis. Treatment with gemcitabine, the FOLFIRINOX scheme or nab-paclitaxel offer only a modest increase in overall survival. For a number of other carcinomas, tumor subtypes have been uncovered that allow the use of targeted therapies. Although subtypes of PDAC were described, this malignancy is clinically still treated as a single disease. We established patient-derived models representing the full spectrum of previously identified quasi-mesenchymal (QM-PDA), classical and exocrine-like PDAC subtypes, and identified two markers—HNF1A and KRT81—that enable stratification of tumors into different subtypes by immunohistochemistry. Patients bearing tumors of these subtypes show significant differences in overall survival and their tumors differ in drug sensitivity, with the exocrine-like subtype being resistant to tyrosine kinase inhibitors and paclitaxel. The xenobiotic enzyme, cytochrome P450 3A5 (CYP3A5), metabolizes these compounds in tumor cells of the exocrine-like subtype, and pharmacological or short hairpin RNA (shRNA)-mediated CYP3A5 inhibition sensitizes tumor cells to these drugs. Additionally, retrospective analysis of a large patient cohort confirmed that CYP3A5 is predominantly found in those patient tumors classified as exocrine-like (Noll, Eisen et al., Nature Medicine (2016) accepted). Whereas the hepatocyte nuclear factor 4, alpha (HNF4A) controls basal expression of CYP3A5, drug-induced CYP3A5 upregulation is mediated by the nuclear receptor NR1I2. Interfering with these regulatory mechanisms may provide an alternative approach to suppress the CYP3A5 mediated resistance pathway. CYP3A5 also contributes to acquired drug resistance in QM-PDA and classical PDAC in vitro and in vivo. Finally, CYP3A5 is highly expressed in several additional malignancies including hepatocellular and cervical carcinomas raising the possibility that the CYP3A5 resistance mechanism is operational in a variety of human cancers. These findings designate CYP3A5 as predictor of therapy response and as a tumor cell-autonomous detoxification mechanism that must be overcome to prevent drug resistance. Citation Format: Elisa M. Noll, Christian Eisen, Albrecht Stenzinger, Elisa Espinet, Alexander Muckenhuber, Corinna Klein, Vanessa Vogel, Bernd Klaus, Wiebke Nadler, Christoph Rösli, Christian Lutz, Michael Kulke, Jan Engelhardt, Franziska Zickgraf, Octavio Espinosa, Matthias Schlesner, Xiaoqi Jiang, Annette Kopp-Schneider, Peter Neuhaus, Marcus Bahra, Bruno Sinn, Roland Eils, Nathalia Giese, Thilo Hackert, Oliver Strobel, Jens Werner, Markus W. Büchler, Wilko Weichert, Andreas Trumpp, Martin R. Sprick. CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr LB-120.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Physiological Society ; 2015
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 308, No. 7 ( 2015-04-01), p. L658-L671
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 308, No. 7 ( 2015-04-01), p. L658-L671
    Abstract: Myofibroblast accumulation, subepithelial fibrosis, and vascular remodeling are complicating features of chronic asthma, but the mechanisms are not clear. Platelet-derived growth factors (PDGFs) regulate the fate and function of various mesenchymal cells and have been implicated as mediators of lung fibrosis. However, it is not known whether PDGF-BB signaling via PDGFRβ, which is critical for the recruitment of pericytes to blood vessels, plays a role in airway remodeling in chronic asthma. In the present study, we used a selective PDGFRβ inhibitor (CP-673451) to investigate the role of PDGFRβ signaling in the development of airway remodeling and lung dysfunction in an established mouse model of house dust mite-induced chronic allergic asthma. Unexpectedly, we found that pharmacological inhibition of PDGFRβ signaling in the context of chronic aeroallergen exposure led to exacerbated lung dysfunction and airway smooth muscle thickening. Further studies revealed that the inflammatory response to aeroallergen challenge in mice was associated with decreased PDGF-BB expression and the loss of pericytes from the airway microvasculature. In parallel, cells positive for pericyte markers accumulated in the subepithelial region of chronically inflamed airways. This process was exacerbated in animals treated with CP-673451. The results indicate that perturbed PDGF-BB/PDGFRβ signaling and pericyte accumulation in the airway wall may contribute to airway remodeling in chronic allergic asthma.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2015
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cell, Elsevier BV, Vol. 162, No. 1 ( 2015-07), p. 146-159
    Type of Medium: Online Resource
    ISSN: 0092-8674
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 187009-9
    detail.hit.zdb_id: 2001951-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cell Reports, Elsevier BV, Vol. 20, No. 1 ( 2017-07), p. 136-148
    Type of Medium: Online Resource
    ISSN: 2211-1247
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 2649101-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...