GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 142, No. Supplement 1 ( 2023-11-02), p. 315-315
    Abstract: Myelodysplastic syndrome (MDS) is characterized by bone marrow failure and a highly variable clinical course. The most catastrophic complication of MDS is transformation to secondary acute myeloid leukemia (sAML). Notably, mutations in TP53 confer the single highest risk of transformation to sAML and death. However, some patients with TP53 mutated MDS do not develop sAML, suggesting that additional genetic events cooperate with TP53 mutations to transform MDS to sAML. Understanding the mechanisms of transformation of MDS to sAML could provide targets for therapeutic intervention. To model the genetics of MDS, we crossed mice bearing Trp53 R270H ( Trp53 is the murine TP53 gene) and deletion of genes syntenic with human chromosome 5q (del(5q)). To discover how additional mutations contribute to disease progression, we utilized Sleeping Beauty (SB) transposon mutagenesis in Trp53 R270H/del(5q) mice. SB transposase mobilized SB mutagenic T2/Onc transposons which randomly insert within the genome. T2/Onc transposons are designed to induce gain or loss of function alterations depending on the site and orientation of insertion with respect to targeted genes. We used the Mx1-Cre transgene to activate SB transposase and T2/Onc transposition in hematopoietic progenitors. Trp53 R270H anddel(5q)(or cytogenetically normal, CN) mice were crossed to SB mice to generate donor mice of the following genotypes: Trp53 R270H/del(5q)/ SB, Trp53 R270H/CN /SB, Trp53 WT/del(5q)/ SB, Trp53 WT/CN/ SB mice, and mice without SB transposition, (no transposition, NT: Trp53 R270H/del(5q) /NT). Bone marrow cells were transplanted into recipients, and SB insertional mutagenesis was activated using pI-pC to activate Cre. Mice receiving Trp53 WT/CN/ SB bone marrow developed more frequent T-cell leukemia (n=3/10) than myeloid leukemia (n=1/10). In contrast, mice receiving Trp53 R270H/del(5q)/SB and Trp53 R270H/CN /SB bone marrow developed predominantly myeloid leukemia (n=14/28) more commonly than T-cell leukemia (1/28). Mixed phenotype leukemia was seen in 7/28 of these mice. Together, these data demonstrate a strong bias towards myeloid disease in SB-mutagenized Trp53 R270H bone marrow. To identify genes with SB insertions, we performed RNA sequencing to detect SB T2/Onc transposon-endogenous genefusion transcripts. Among Trp53 WT/CN/ SB leukemias, the most common recurrent SB fusions involved Notch1 and Ikzf1 as has previously reported for SB-associated T-cell leukemias . Among Trp53 R270H/del(5q)/SB and Trp53 R270H/CN /SB leukemias, the most common recurrent SB-fusions involved Erg, Eras and Il2rb with Erg fusions detected 85% of Trp53 R270H leukemias (n=17/20). SB inserted upstream of Erg promoter indicating that these fusions likely upregulate expression of Erg. Indeed, Erg levels are significantly higher in leukemias that express SB-Erg fusions relative to leukemias that do not (p & lt;0.0023). ERG is not recurrently mutated in human AML, but the ERG gene locus is commonly amplified, especially TP53 mutant AML. ERG is known to support normal hematopoietic stem cell self-renewal. Notably, Erg-insertions were also detected in a model of MDS expressing stabilized cyclin E with SB-mediated progression to erythroleukemia (Loeb 2019). Using gene set enrichment analysis, we found that hematopoietic stem cell and leukemic stem cell signatures are enriched in Erg-SB fusion leukemias. In our analyses of two independent data sets (TCGA and BEAT AML), stem cell signatures are also among the most highly enriched pathways in human AMLs expressing high ERG levels. Furthermore, in a human AML single cell RNA sequencing dataset (van Galen 2019), we found that ERG expression is highest in AML cells with the most immature stem and progenitor-like features. Together, these findings implicate a role for ERG as a driver of progression of MDS to AML by enhancing aberrant self-renewal. In summary, we present a novel murine model of Trp53/del(5q) MDS. In this model, Erg upregulation is associated with progression to AML and upregulation of leukemia stem cell gene expression profiles. These data implicate ERG as a major contributor to progression of MDS to secondary AML in the setting of mutant p53. Understanding the mechanisms of disease progression and self-renewal in myeloid malignancies with p53 mutations is critical to define effective therapeutic strategies in these rapidly fatal, treatment resistant diseases.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2023
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Leukemia Research, Elsevier BV, Vol. 95 ( 2020-08), p. 106404-
    Type of Medium: Online Resource
    ISSN: 0145-2126
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 752396-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Bioorganic & Medicinal Chemistry, Elsevier BV, Vol. 23, No. 15 ( 2015-08), p. 4737-4745
    Type of Medium: Online Resource
    ISSN: 0968-0896
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 1161284-8
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Molecular Cell, Elsevier BV, Vol. 61, No. 4 ( 2016-02), p. 625-639
    Type of Medium: Online Resource
    ISSN: 1097-2765
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2016
    detail.hit.zdb_id: 1415236-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Wiley ; 2020
    In:  The FASEB Journal Vol. 34, No. S1 ( 2020-04), p. 1-1
    In: The FASEB Journal, Wiley, Vol. 34, No. S1 ( 2020-04), p. 1-1
    Abstract: Acute myeloid leukemia (AML) is a cancer of the blood and bone marrow with a low two‐year survival rate. Standard chemotherapy achieves complete remission in 60–80% of patients, but 20–30% patients relapse due to leukemia stem cells (LSCs) that can self‐renew and recapitulate disease. AML with TP53 alterations has a lower prognosis with survival rates of 0–10% at one year. In vitro drug screens have identified drugs to target AML, but none have studied the effect of these therapies on LSCs with TP53 alterations. These in vitro drug screens include Crizotinib, Elesclomol, AZD1480, GW2580, Venetoclax, and Entrectinib. Crizotinib, AZD1480, GW2580, Venetoclax, and Entrectinib are signaling pathway inhibitors. Elesclomol induces oxidative stress and apoptosis in cancer cells. The goal of this research is to understand the molecular mechanisms of self‐renewal and therapeutic vulnerabilities in LSCs of AML with TP53 alterations. Specifically, we investigate whether these agents target LSCs from AML with TP53 alterations. We performed in vitro viability and in vitro colony forming assays (CFAs) on primary human AML samples with TP53 alterations, plating them with drugs or vehicle control. Furthermore, we used CYTOF to assess the effects of each drug on signaling within leukemia subpopulations. Crizotinib proved to be effective in reducing in vitro viability, in vitro CFAs, and affecting the expression of immunophenotypic markers, such as CD34 and CD123, which are markers for leukemia stem cell populations. Our data reveals cell‐type specific effects of Crizotinib in human AML with TP53 alterations. Our findings suggest that Crizotinib may be an effective therapy for patients with AML with TP53 alterations. Support or Funding Information This research was supported and funded by: NIH/NIGMS MARC U* STAR T34 HHS 00026 National Research Service Award to UMBC, Summer Research at the University of Minnesota Medical School NIH HLBI 2R25HL088728‐11A1, Dr. Colin Campbell, Dr. Craig Henke, American Cancer Society Mentored Research Scholar Grant (MSRG‐16‐195‐01‐DDC), Frederick A. Deluca Foundation, CTSI K to R01 Award, NIH/NCATS, Lois and Richard King Assistant Professorship in Medicine, Division of Hematology, Oncology, Transplantation, Dept. of Medicine, University of Minnesota University of Minnesota Foundation Donors
    Type of Medium: Online Resource
    ISSN: 0892-6638 , 1530-6860
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 1468876-1
    detail.hit.zdb_id: 639186-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 23, No. 24_Supplement ( 2017-12-15), p. PR09-PR09
    Abstract: Acute myeloid leukemia (AML) is a lethal cancer with a survival of less than 50%. Standard cytotoxic therapies frequently induce complete remission, but patients frequently relapse and die of their disease. Leukemia stem cells (LSCs) are the leukemia cells with self-renewal potential and ability to recapitulate the disease. Most anticancer therapies are designed to inhibit proliferation. Yet, in hematopoietic stem cells, the mechanisms of proliferation are distinct from self-renewal (Li et al. Nature 2013). Consequently, targeting proliferation may explain the failure of traditional chemotherapy to target LSCs and eradicate AML. Our goal is define the self-renewing LSCs in order to develop therapeutics that target them and eliminate AML relapse. We previously showed that activated NRAS (NRASG12V) facilitates self-renewal in the LSC-enriched subpopulation of a transgenic mouse model of AML (Mll-AF9/NRASG12V) (Sachs et al. Blood 2014; Kim et al. Blood 2009). We hypothesize that self-renewal capacity and the NRAS-activated pathways required for self-renewal are limited to a subpopulation of LSCs. We used single-cell RNA sequencing to identify the self-renewing cells among the LSC-enriched subgroup in this model (Mac1LowKit+Sca1+, “MKS”). We identified three discrete transcriptional profiles among the LSC-enriched subpopulation and found that that two of these profiles (Profile 1 and Profile 2) are NRASG12V-dependent. These two profiles can be differentiated by CD36 and CD69 expression. We sorted the MKS LSCs based on CD36 and CD69 expression. Sorted LSC subsets were transplanted into recipient mice to compare their ability to transfer leukemia as a measure of their self-renewal capacity. We found that MKS-CD36-CD69+ cells (consistent with Profile 1) rapidly transferred leukemia with high penetrance in 20 of 22 mice. In contrast, MKS-CD36+CD69- cells (Profile 2) failed transfer leukemia in most mice; only 2 of 25 of these mice developed AML (p & lt; 0.004). In our previous work, we demonstrated that the NRASG12V-activated self-renewal gene expression profile that we identified in our murine model was expressed in human AML, suggesting that the gene expression behavior of LSCs from this model may recapitulate the gene expression behavior of human LSCs (Sachs et al. Blood 2014). In order to determine if the single-cell transcriptional profiles of our murine AML can be found in primary human AML precursors, we performed single-cell RNA sequencing on CD34+ human AML cells obtained from a diagnostic bone marrow specimen. Analogous to our murine model, we found that these human AML cells express 2 distinct single-cell transcriptional profiles and they differentially express RAS-activated gene expression profiles and profiles of hematopoietic differentiation. Next, we used our murine single-cell self-renewal transcriptional profile to define a 96-gene panel consisting of 88 genes from this profile and 8 housekeeping genes. We sorted primary, diagnostic human AML cells for leukemia stem and progenitor cells (CD34+CD38-) and performed single-cell qPCR on these cells using our 96-gene panel. We found that a subset of these cells preferentially expresses Profile 1, the self-renewal gene expression profile that we identified in our murine model, and another subset preferentially expresses Profile 2 (the profile associated with no leukemia-reconstituting capacity). In these experiments, we use a murine model of AML to define the LSC self-renewal gene expression profile at the single-cell level and functionally validate this profile in vivo. Analogous to the murine model, a subset of human AML stem and progenitor cells expresses this LSC self-renewal gene expression profile at the single-cell level. These data suggest that single-cell gene expression profiling can delineate leukemia cells with true self-renewal capacity. This abstract is also being presented as Poster 43. Citation Format: Klara E. Noble-Orcutt, Karen Sachs, Connor Navis, Alexandria Hillesheim, Ian Nykaza, Rebecca S. LaRue, Conner Hansen, Ngoc Ha, Michael A. Linden, David A. Largaespada, Zohar Sachs. Single-cell transcriptional profiling of acute myeloid leukemia identifies self-renewing stem cells [abstract]. In: Proceedings of the Second AACR Conference on Hematologic Malignancies: Translating Discoveries to Novel Therapies; May 6-9, 2017; Boston, MA. Philadelphia (PA): AACR; Clin Cancer Res 2017;23(24_Suppl):Abstract nr PR09.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 3 ( 2020-02-01), p. 458-470
    Abstract: Standard chemotherapy for acute myeloid leukemia (AML) targets proliferative cells and efficiently induces complete remission; however, many patients relapse and die of their disease. Relapse is caused by leukemia stem cells (LSC), the cells with self-renewal capacity. Self-renewal and proliferation are separate functions in normal hematopoietic stem cells (HSC) in steady-state conditions. If these functions are also separate functions in LSCs, then antiproliferative therapies may fail to target self-renewal, allowing for relapse. We investigated whether proliferation and self-renewal are separate functions in LSCs as they often are in HSCs. Distinct transcriptional profiles within LSCs of Mll-AF9/NRASG12V murine AML were identified using single-cell RNA sequencing. Single-cell qPCR revealed that these genes were also differentially expressed in primary human LSCs and normal human HSPCs. A smaller subset of these genes was upregulated in LSCs relative to HSPCs; this subset of genes constitutes “LSC-specific” genes in human AML. To assess the differences between these profiles, we identified cell surface markers, CD69 and CD36, whose genes were differentially expressed between these profiles. In vivo mouse reconstitution assays resealed that only CD69High LSCs were capable of self-renewal and were poorly proliferative. In contrast, CD36High LSCs were unable to transplant leukemia but were highly proliferative. These data demonstrate that the transcriptional foundations of self-renewal and proliferation are distinct in LSCs as they often are in normal stem cells and suggest that therapeutic strategies that target self-renewal, in addition to proliferation, are critical to prevent relapse and improve survival in AML. Significance: These findings define and functionally validate a self-renewal gene profile of leukemia stem cells at the single-cell level and demonstrate that self-renewal and proliferation are distinct in AML.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2016
    In:  Cancer Research Vol. 76, No. 14_Supplement ( 2016-07-15), p. 3339-3339
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. 3339-3339
    Abstract: Acute myeloid leukemia (AML) is frequently fatal because patients who initially respond to chemotherapy eventually relapse. Most anticancer therapies are designed to inhibit proliferation. Yet, in hematopoietic stem cells, the mechanisms of proliferation are distinct from self-renewal (Li et al., Nature 2013). Consequently, targeting proliferation may explain the failure of traditional chemotherapy to eradicate this disease. NRASG12V is required for self-renewal in a murine AML model (Sachs et al., Blood 2014). To study NRAS-mediated leukemia self-renewal, we use a transgenic mouse model of AML with an Mll-AF9 fusion and a tetracycline repressible, NRASG12V oncogene (Kim et al., Blood 2009). Doxycycline abolishes NRASG12V expression leading to leukemia remission. We hypothesize that NRAS-activated pathways required for self-renewal are limited to a subpopulation of LSCs. To identify the NRASG12V-mediated self-renewing subpopulation, we performed single-cell RNA sequencing on the LSC-enriched cells from our AML model. Hierarchical clustering of LSC single-cell data identified three discrete profiles. Comparing the profiles of NRASG12V-expressing LSCs (“RAS-on”) to doxycycline-treated LSCs (“RAS-Off”) revealed that two of the three LSC-expression profiles are lost when NRASG12V is withdrawn. These data suggest that these two profiles are NRASG12V-dependent consistent with an earlier report that activated NRAS exerts bimodal effects on HSCs (Li et al., Nature 2013). One of these LSC subpopulations preferentially expresses genes associated with leukemia self-renewal. On the basis of this single-cell gene expression data, we identfied cell surface markers (CD36 and CD69) that delineate the two NRASG12V-responsive LSC-subpopulations. We sorted LSCs based on CD36 and CD69 status and found that CD36−CD69+ LSCs (the group that expresses self-renewal gene expression profiles) harbor nearly all of the colony-forming capacity of the LSCs, forming an average of 13 colonies versus 0.33 colonies for CD69- LSCs and versus 0.11 colonies for non-LSCs (per 10,000 cells plated, p & lt; 0.00001 for each comparison). Accordingly, in vivo mouse reconstituting experiments show that the CD36-CD69+ LSC is the only LSC subgroup that can reconstitute the leukemia in mice (p & lt; 0.005). These experiments characterize the NRASG12V-mediated self-renewal transcriptional signature. Using mass cytometry to query the activation status of signaling pathways simulteneously with multiple immunophenotypic markers, we show that Ki67Low LSCs (the putative self-renewing LSCs) preferentially express increased levels of β-catenin and Myc. These data implicating AML self-renewal pathways can provide precise molecular targets for treating this deadly disease. Citation Format: Rebecca S. LaRue, Klara E. Noble-Orcutt, Conner Hansen, Ngoc Ha, David A. Largaespada, Zohar Sachs. Single-cell analysis reveals molecular mechanisms of NRAS-mediated leukemia stem cell self-renewal in a murine model of AML. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 3339.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2023
    In:  Blood Cancer Discovery Vol. 4, No. 3_Supplement ( 2023-05-01), p. A56-A56
    In: Blood Cancer Discovery, American Association for Cancer Research (AACR), Vol. 4, No. 3_Supplement ( 2023-05-01), p. A56-A56
    Abstract: AML with TP53 mutations (TP53Mut) is a poor-risk AML subtype that is largely insensitive to chemotherapy, targeted agents, and hematopoietic stem cell transplantation. TP53Muts are seen in approximately 10-20% of AML and confer a particularly poor prognosis with 1–2-year survival rates to 0-10%. Self-renewal is the defining feature of leukemia stem cells (LSCs) and is central to leukemia progression and relapse. Mutant p53 protein enhances self-renewal in murine models of AML and in human hematopoietic progenitors. In solid tumors, analysis of a variety of TP53Muts defined the proteasome pathway as a common transcriptional target and mediator of oncogenesis among these mutations. Notably, the proteasome degrades I kappa B which activates NF kappa B, which enforces AML self-renewal. Proteasome inhibitors have shown some efficacy in AML clinical trials but have not been well-evaluated in TP53Mut patients. We hypothesize that the proteasome is mediator of self-renewal in TP53Mut AML. To define the transcriptional features of TP53Mut AML, we analyzed the gene expression data in the BEAT AML dataset of primary human AML samples (Tyner, et al. 2018). Relative to TP53WT (n=377 samples), the TP53 mutant samples (n=36) were enriched in every NF kappa B and proteasome gene-set queried. Next, we analyzed a single cell RNA seq dataset of human AML samples (van Galen et al. 2019) and found that the LSC compartment of TP53Mut samples (n=3) strongly upregulated every proteasome gene set we queried (relative to TP53WT samples (n=13)). A recent in vitro screen identified a panel of small molecule inhibitors that reduced viability in TP53-deleted cell lines (Nechiporuk et al. 2019). We tested the activity of these inhibitors in primary human TP53Mut samples. Four of these inhibitors were effective in reducing colony forming capacity or reduced LSC frequency in TP53Mut samples (n=9). We used CyTOF to assess intracellular signaling pathways in LSCs and found that the inhibitors that were most effective in abolishing colony formation and reducing LSC frequency also attenuated NF kappa B levels in TP53Mut LSCs. Accordingly, we found that knockdown of mutant TP53 reduced NF kappa B levels in Kasumi cells (a TP53R248Q AML cell line). Next, we treated a panel of primary human TP53Mut AML samples with the pan-proteasome inhibitors, carfilzomib and bortezomib (FDA approved for lymphoid malignancies) and an immunoproteasome inhibitor, PR957 (in clinical trials for autoimmune conditions). Each drug independently reduced NF kappa B and led to a significant reduction of primary and secondary colony formation. These data suggest that the proteasome/NF kappa B pathway may be an important determinant of self-renewal function in TP53Mut AML and proteasome inhibitors may target the LSCs of this treatment-refractory AML subtype. Citation Format: Marie Lue Antony, Yoonkyu Lee, Klara E Noble-Orcutt, Zohar Sachs. TP53 mutant human AMLs stem cells rely on the proteasome for self-renewal [abstract] . In: Proceedings of the AACR Special Conference: Acute Myeloid Leukemia and Myelodysplastic Syndrome; 2023 Jan 23-25; Austin, TX. Philadelphia (PA): AACR; Blood Cancer Discov 2023;4(3_Suppl):Abstract nr A56.
    Type of Medium: Online Resource
    ISSN: 2643-3249
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 3028898-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Molecular Cancer Research, American Association for Cancer Research (AACR), Vol. 20, No. 11 ( 2022-11-03), p. 1646-1658
    Abstract: NRAS proteins are central regulators of proliferation, survival, and self-renewal in leukemia. Previous work demonstrated that the effects of oncogenic NRAS in mediating proliferation and self-renewal are mutually exclusive within leukemia subpopulations and that levels of oncogenic NRAS vary between highly proliferative and self-renewing leukemia subpopulations. These findings suggest that NRAS activity levels may be important determinants of leukemic behavior. To define how oncogenic NRAS levels affect these functions, we genetically engineered an acute myeloid leukemia (AML) cell line, THP-1, to express variable levels of NRASG12V. We replaced the endogenous NRASG12D gene with a tetracycline-inducible and dose-responsive NRASG12V transgene. Cells lacking NRASG12V oncoprotein were cell-cycle arrested. Intermediate levels of NRASG12V induced maximal proliferation; higher levels led to attenuated proliferation, increased G1 arrest, senescence markers, and maximal self-renewal capacity. Higher levels of the oncoprotein also induced self-renewal and mitochondrial genes. We used mass cytometry (CyTOF) to define the downstream signaling events that mediate these differential effects. Not surprisingly, we found that the levels of such canonical RAS-effectors as pERK and p4EBP1 correlated with NRASG12V levels. β-Catenin, a mediator of self-renewal, also correlated with NRASG12V levels. These signaling intermediates may mediate the differential effects of NRASG12V in leukemia biology. Together, these data reveal that oncogenic NRAS levels are important determinants of leukemic behavior explaining heterogeneity in phenotypes within a clone. This system provides a new model to study RAS oncogene addiction and RAS-induced self-renewal in AML. Implications: Different levels of activated NRAS may exert distinct effects on proliferation and self-renewal.
    Type of Medium: Online Resource
    ISSN: 1541-7786 , 1557-3125
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2098788-2
    detail.hit.zdb_id: 2097884-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...