GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Integrative Plant Biology, Wiley, Vol. 62, No. 10 ( 2020-10), p. 1574-1593
    Abstract: Pollen exine contains complex biopolymers of aliphatic lipids and phenolics. Abnormal development of pollen exine often leads to plant sterility. Molecular mechanisms regulating exine formation have been studied extensively but remain ambiguous. Here we report the analyses of three GDSL esterase/lipase protein genes, OsGELP34 , OsGELP110 , and OsGELP115 , for rice exine formation. OsGELP34 was identified by cloning of a male sterile mutant gene. OsGELP34 encodes an endoplasmic reticulum protein and was mainly expressed in anthers during pollen exine formation. osgelp34 mutant displayed abnormal exine and altered expression of a number of key genes required for pollen development. OsGELP110 was previously identified as a gene differentially expressed in meiotic anthers. OsGELP110 was most homologous to OsGELP115 , and the two genes showed similar gene expression patterns. Both OsGELP110 and OsGELP115 proteins were localized in peroxisomes. Individual knockout of OsGELP110 and OsGELP115 did not affect the plant fertility, but double knockout of both genes altered the exine structure and rendered the plant male sterile. OsGELP34 is distant from OsGELP110 and OsGELP115 in sequence, and osgelp34 and osgelp110/osgelp115 mutants were different in anther morphology despite both were male sterile. These results suggested that OsGELP34 and OsGELP110/OsGELP115 catalyze different compounds for pollen exine development.
    Type of Medium: Online Resource
    ISSN: 1672-9072 , 1744-7909
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2130095-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Experimental Botany, Oxford University Press (OUP), Vol. 71, No. 1 ( 2020-01-01), p. 204-218
    Abstract: Meiotic recombination plays a central role in maintaining genome stability and increasing genetic diversity. Although meiotic progression and core components are widely conserved across kingdoms, significant differences remain among species. Here we identify a rice gene ABERRANT GAMETOGENESIS 1 (AGG1) that controls both male and female gametogenesis. Cytological and immunostaining analysis showed that in the osagg1 mutant the early recombination processes and synapsis occurred normally, but the chiasma number was dramatically reduced. Moreover, OsAGG1 was found to interact with ZMM proteins OsHEI10, OsZIP4, and OsMSH5. These results suggested that OsAGG1 plays an important role in crossover formation. Phylogenetic analysis showed that OsAGG1 is a plant-specific protein with a highly conserved N-terminal region. Further genetic and protein interaction analyses revealed that the conserved N-terminus was essential for the function of the OsAGG1 protein. Overall, our work demonstrates that OsAGG1 is a novel and critical component in rice meiotic crossover formation, expanding our understanding of meiotic progression. This study identified a plant-specific gene ABERRANT GAMETOGENESIS 1 that is required for meiotic crossover formation in rice. The conserved N-terminus of the AGG1 protein was found to be essential for its function.
    Type of Medium: Online Resource
    ISSN: 0022-0957 , 1460-2431
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1466717-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...