GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
Subjects(RVK)
  • 1
    In: European Heart Journal, Oxford University Press (OUP), ( 2024-05-20)
    Abstract: It has been reported that patients without standard modifiable cardiovascular (CV) risk factors (SMuRFs—diabetes, dyslipidaemia, hypertension, and smoking) presenting with first myocardial infarction (MI), especially women, have a higher in-hospital mortality than patients with risk factors, and possibly a lower long-term risk provided they survive the post-infarct period. This study aims to explore the long-term outcomes of SMuRF-less patients with stable coronary artery disease (CAD). Methods CLARIFY is an observational cohort of 32 703 outpatients with stable CAD enrolled between 2009 and 2010 in 45 countries. The baseline characteristics and clinical outcomes of patients with and without SMuRFs were compared. The primary outcome was a composite of 5-year CV death or non-fatal MI. Secondary outcomes were 5-year all-cause mortality and major adverse cardiovascular events (MACE—CV death, non-fatal MI, or non-fatal stroke). Results Among 22 132 patients with complete risk factor and outcome information, 977 (4.4%) were SMuRF-less. Age, sex, and time since CAD diagnosis were similar across groups. SMuRF-less patients had a lower 5-year rate of CV death or non-fatal MI (5.43% [95% CI 4.08–7.19] vs. 7.68% [95% CI 7.30–8.08] , P = 0.012), all-cause mortality, and MACE. Similar results were found after adjustments. Clinical event rates increased steadily with the number of SMuRFs. The benefit of SMuRF-less status was particularly pronounced in women. Conclusions SMuRF-less patients with stable CAD have a substantial but significantly lower 5-year rate of CV death or non-fatal MI than patients with risk factors. The risk of CV outcomes increases steadily with the number of risk factors.
    Type of Medium: Online Resource
    ISSN: 0195-668X , 1522-9645
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2024
    detail.hit.zdb_id: 2001908-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature, Springer Science and Business Media LLC, Vol. 454, No. 7201 ( 2008-7), p. 226-231
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2008
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 393-393
    Abstract: Background: Studying gene expression and clinical outcome data from 136 clinical trials for patients with cancer (~21,000 patients with 26 cancer types), we found CD25 as one of the strongest predictors of poor clinical outcome in patients with B-cell malignancies, but not in other cancer types. This was unexpected because CD25 is known as one of three chains of the IL2 receptor on T-cells and NK-cells. Interleukin-2 (IL2) functions as essential T-cell growth factor. IL2 signals through b- and g-, but not a-chains (CD25) of its heterotrimeric receptor. CD25-deficiency causes lymphoproliferation and autoimmunity, however, its mechanistic role is unclear. Results: Our experiments based on genetic mouse models and engineered patient-derived B-cell leukemia and lymphoma xenografts revealed that CD25 expressed on B-cells is not an IL2 receptor chain, but in fact binds downstream signaling molecules of the B-cell receptor (BCR). Through these interactions, CD25 mediates negative feedback to BCR signaling in response to antigen-encounter in normal B-cells. Defects in CD25-/-B-cells were not replicated in mice that express CD25 but lack expression of the IL2 cytokine. These findings demonstrate IL2-independent functions of CD25 in B-cells and B-cell derived leukemia and lymphoma. To comprehensively study the interactome of the short cytoplasmic tail of CD25, we performed proximity-dependent biotin identification (BioID). This analysis revealed that the CD25 tail exerts negative feedback control through recruitment of the PKCβ-scaffold RACK1 and the inhibitory phosphatase SHIP1 (see schematic, left). Interestingly, the cytoplasmic tail of CD25 harbors a PKCβ-substrate motif and mutation of a central serine residue (S268) to A268 compromised interactions with PKCβ, its scaffold RACK1 and SHIP1, demonstrating that feedback control was dependent on PKCβ-mediated phosphorylation of CD25-S268. A genetic observation in a family with monogenic autoimmunity confirmed the functional importance of the cytoplasmic CD25-tail motif: a mutation immediately preceding S268 compromised CD25-surface translocation, which was restored by homology-directed repair of the S268. In vitro kinase assay with 62 candidate kinases against recombinant cytoplasmic tail of CD25-S268 or -A268 identified PKCβ as top-ranking kinase hit for CD25-S268 but not CD25-A268. Our genetic studies revealed that PKCβ is required for cell-membrane translocation of CD25, but also transcriptional expression of CD25 via NF-κB activation. Therefore, PKCβ act as critical effector molecule downstream of CD25 to mediate B-cell selection during normal B-cell development and calibrate oncogenic BCR signaling in B-cell tumors. In B-cell malignancies, BCR-dependent survival and proliferation signals are often substituted by oncogenic BCR-mimics (e.g. BCR-ABL1, JAK2, BRAFV600E, LMP2A, CD79B mutations; see schematic, right). Accordingly, we identified CD25 surface-expression as biomarker of oncogenic BCR-signaling and predictor of poor clinical outcomes. CD25-/-B-cell leukemia failed to initiate fatal disease in transplant recipients. Owing to imbalances of oncogenic BCR-signaling and p53-checkpoint activation, CD25-/- B-cell leukemia failed to initiate fatal disease in transplant recipients. In patient-derived xenograft models of drug-resistant B-cell malignancies, treatment with a CD25-specific antibody drug-conjugate (ADCT-301) extended survival of transplant recipients or eradicated disease. These findings identified CD25 as previously unrecognized feedback regulator of oncogenic BCR-signaling and provide a rationale for therapeutic targeting of CD25 in refractory B-cell malignancies. Figure Disclosures Zammarchi: ADC Therapeutics: Employment. Van Berkel:ADC Therapeutics: Research Funding. Melnick:Constellation: Consultancy; Janssen: Research Funding; Epizyme: Consultancy. Luger:Celgene: Research Funding; Cyslacel: Research Funding; Pfizer: Honoraria; Seattle Genetics: Research Funding; Agios: Honoraria; Ariad: Research Funding; Biosight: Research Funding; Kura: Research Funding; Onconova: Research Funding; Genetech: Research Funding; Jazz: Honoraria; Daichi Sankyo: Honoraria. Meffre:AbbVie: Consultancy, Other: Grant. Weinstock:Celgene: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 776-776
    Abstract: Studying gene expression and clinical outcome data from 136 clinical trials for patients with cancer (~21,000 patients with 26 cancer types), we found CD25 as one of the strongest predictors of poor clinical outcome in patients with B-cell malignancies, but not in other cancer types. This was unexpected because CD25 is known as one of three chains of the IL2 receptor on T-cells and NK-cells. Interleukin-2 (IL2) functions as essential T-cell growth factor. IL2 signals through β- and γ-, but not α-chains (CD25) of its heterotrimeric receptor. CD25-deficiency causes lymphoproliferation and autoimmunity, however, its mechanistic role is unclear. Our experiments based on genetic mouse models and engineered patient-derived B-cell leukemia and lymphoma xenografts revealed that CD25 expressed on B-cells is not an IL2 receptor chain, but in fact binds the B-cell receptor (BCR) to regulate its activity. Suggesting IL2-independent functions, defects in CD25-/-B-cells were not replicated in IL2-deficient mice. CD25 bound the BCR but not IL2Rβ- and IL2Rγ-chains. IL2Rβ- and IL2Rγ-chains can pair with other chains to form receptors for different cytokine-ligands. However, CD25 represents the first example of a cytokine receptor chain that binds to the BCR for negative feedback regulation. Likewise, in T-cells, CD25 had a bifunctional role and either functioned as IL2 receptor chain or as negative feedback regulator of T-cell receptor signaling. CD25-function was regulated by cell-membrane translocation, which required phosphorylation of its cytoplasmic tail at S268 (see schematic, left). In a family with monogenic autoimmunity, a mutation immediately preceding S268 compromised CD25-surface translocation, which was restored by homology-directed repair of the S268 motif. CD25-interactome analyses identified PKCd as critical effector molecule downstream of CD25 to mediate B-cell selection during normal B-cell development and calibrate oncogenic BCR signaling in B-cell tumors. In B-cell malignancies, BCR-dependent survival and proliferation signals are often substituted by oncogenic BCR-mimics (e.g. BCR-ABL1, JAK2, BRAFV600E, LMP2A, CD79B mutations; see schematic, right). Accordingly, we identified CD25 surface-expression as biomarker of oncogenic BCR-signaling and predictor of poor clinical outcomes. CD25-/-B-cell leukemia failed to initiate fatal disease in transplant recipients. Owing to imbalances of oncogenic BCR-signaling and p53-checkpoint activation, CD25-/- B-cell leukemia failed to initiate fatal disease in transplant recipients. In patient-derived xenograft models of drug-resistant B-cell malignancies, treatment with a CD25-specific antibody drug-conjugate (ADCT-301) extended survival of transplant recipients or eradicated disease. These findings identified CD25 as previously unrecognized feedback regulator of oncogenic BCR-signaling and provide a rationale for therapeutic targeting of CD25 in refractory B-cell malignancies. Figure. Figure. Disclosures Forman: Mustang Therapeutics: Other: Licensing Agreement, Patents & Royalties, Research Funding. Weinstock:Genentech/Roche, Monsanto: Consultancy; Novartis: Consultancy, Research Funding; Novartis, Astra Zeneca, Abbvie, Aileron, Surface Oncology, Daiichi Sankyo: Research Funding; Novartis, Dragonfly, Travera, DxTerity, Travera: Consultancy; Travera: Equity Ownership; Astra Zeneca, JAX, Samumed, Regeneron, Sun Pharma, Prescient: Patents & Royalties. Uzel:Novartis: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: The Journal of Experimental Medicine, Rockefeller University Press, Vol. 189, No. 2 ( 1999-01-18), p. 403-412
    Abstract: Mice deficient in the cytokines tumor necrosis factor (TNF) or lymphotoxin (LT) α/β lack polarized B cell follicles in the spleen. Deficiency in CXC chemokine receptor 5 (CXCR5), a receptor for B lymphocyte chemoattractant (BLC), also causes loss of splenic follicles. Here we report that BLC expression by follicular stromal cells is defective in TNF-, TNF receptor 1 (TNFR1)-, LTα- and LTβ-deficient mice. Treatment of adult mice with antagonists of LTα1β2 also leads to decreased BLC expression. These findings indicate that LTα1β2 and TNF have a role upstream of BLC/CXCR5 in the process of follicle formation. In addition to disrupted follicles, LT-deficient animals have disorganized T zones. Expression of the T cell attractant, secondary lymphoid tissue chemokine (SLC), by T zone stromal cells is found to be markedly depressed in LTα-, and LTβ-deficient mice. Expression of the SLC-related chemokine, Epstein Barr virus–induced molecule 1 ligand chemokine (ELC), is also reduced. Exploring the basis for the reduced SLC expression led to identification of further disruptions in T zone stromal cells. Together these findings indicate that LTα1β2 and TNF are required for the development and function of B and T zone stromal cells that make chemokines necessary for lymphocyte compartmentalization in the spleen.
    Type of Medium: Online Resource
    ISSN: 0022-1007 , 1540-9538
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 1999
    detail.hit.zdb_id: 1477240-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature, Springer Science and Business Media LLC, Vol. 458, No. 7234 ( 2009-3), p. 92-96
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2009
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 2512-2512
    Abstract: Mantle cell lymphoma (MCL) is rarely curable and therapy resistance often leaves few viable treatment options for patients. Previous studies have identified the importance of cyclin D1 (CCND1) translocation and overexpression in MCL pathogenesis, which leads to increased cyclin-dependent kinase 4 (CDK4) activity and accelerated cell cycle progression. However, targeting this abnormal cell cycle control, mainly through CDK4 inhibition causes only G1-phase growth arrest without significant cell death (Marzec et al. 2006). In contrast, prolonged inhibition of CCND1 with RNA interference induces apoptosis in MCL cell lines (Weinstein et al. 2012), suggesting an essential function of CCND1 independent of CDK4 activity. The mechanism of this non-catalytic role of CCND1 in maintaining MCL cell survival is largely unknown. To clarify the cell cycle role of CCND1 in addition to its CDK4-dependent function, we compared the effects of CCND1 and CDK4 silencing on MCL cell survival. MCL cell lines co-expressing GFP and doxycycline-inducible shRNA targeting CCND1 or CDK4 were generated. Cells with similar GFP expression levels were FACS sorted to normalize for shRNA expression. Both CCND1 and CDK4 silencing resulted in G1-phase arrest, but only CCND1-silenced cells demonstrated a marked increase in apoptosis. Investigation of the potential cause of apoptosis revealed significant accumulation of DNA double-strand breaks following CCND1 ablation, as measured by nuclear gamma-H2AX focus formation. Interestingly, CCND1-silenced cells exhibited a significant increase in 53BP1+ nuclear bodies in G1-phase, reminiscent of 53BP1 foci observed by Lukas and colleagues in cells undergoing aphidicolin-induced replication stress (Lukas et al. 2011). Analysis of replication fork movement in CCND1-depleted cells showed substantially reduced fork speed and increased frequency of origin firing, both of which are indicative of replication stress. In contrast, knockdown of CDK4 did not result in slower forks or increase in the frequency of origin firing. Genomic instability associated with replication stress was also apparent in CCND1-silenced cells, including increased micronucleus formation and recurrent chromatid gaps or breaks detected by cytokinesis-block assay and karyotyping, respectively. Analysis of DNA replicative and damage checkpoints revealed that both ATR-CHEK1 and ATM-CHEK2 pathways were activated by phosphorylation following CCND1 silencing in MCL cell lines, a xenograft animal model, and primary tumor samples, but not in non-MCL tumors. Interestingly, this activation (with the exception of ATM phosphorylation) was unsustainable over time and did not cause down-regulation of the downstream targets CDC25 and CDK1/2 but, instead, we observed an increase in CDC25A/B protein levels and CDK1/2 activity, indicating defective cell cycle checkpoints. Exposing CCND1-silenced cells to replication stress-inducing or DNA-damaging agents such hydroxyurea, aphidicolin, etoposide or ionizing radiation further amplified the checkpoint defects seen in unperturbed cells. We did not observe any significant difference in this checkpoint signaling in control and CDK4 knockdown cells under these conditions. Furthermore, CCND1-deficient cells were more sensitive to pharmacological inhibition of ATR and CHEK1 but not ATM, confirming a constitutive role of CCND1 in the ATR-CHEK1 pathway. In conclusion, these studies revealed an unexpected CDK4-independent role of CCND1 in maintaining DNA replicative checkpoints to prevent replication stress and genome instability in MCL cells. As most cancer treatments rely on agents that create DNA replication stress, targeting this function of CCND1 could provide a rational approach to overcome resistance to conventional therapies in MCL. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Immunity, Elsevier BV, Vol. 15, No. 4 ( 2001-10), p. 533-543
    Type of Medium: Online Resource
    ISSN: 1074-7613
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2001
    detail.hit.zdb_id: 2001966-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2006
    In:  Nature Vol. 441, No. 7089 ( 2006-5), p. 106-110
    In: Nature, Springer Science and Business Media LLC, Vol. 441, No. 7089 ( 2006-5), p. 106-110
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2006
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Rockefeller University Press ; 2001
    In:  The Journal of Experimental Medicine Vol. 194, No. 11 ( 2001-12-03), p. 1649-1660
    In: The Journal of Experimental Medicine, Rockefeller University Press, Vol. 194, No. 11 ( 2001-12-03), p. 1649-1660
    Abstract: The factors regulating growth and patterning of the spleen are poorly defined. We demonstrate here that spleens from B cell–deficient mice have 10-fold reduced expression of the T zone chemokine, CCL21, a threefold reduction in T cell and dendritic cell (DC) numbers, and reduced expression of the T zone stromal marker, gp38. Using cell transfer and receptor blocking approaches, we provide evidence that B cells play a critical role in the early postnatal development of the splenic T zone. This process involves B cell expression of lymphotoxin (LT)α1β2, a cytokine that is required for expression of CCL21 and gp38. Introduction of a B cell specific LTα transgene on to the LTα-deficient background restored splenic CCL21 and gp38 expression, DC numbers, and T zone size. This work also demonstrates that the role of B cells in T zone development is distinct from the effect of B cells on splenic T cell numbers, which does not require LTα1β2. Therefore, B cells influence spleen T zone development by providing: (a) signals that promote T cell accumulation, and: (b) signals, including LTα1β2, that promote stromal cell development and DC accumulation. Defects in these parameters may contribute to the immune defects associated with B cell deficiency in mice and humans.
    Type of Medium: Online Resource
    ISSN: 1540-9538 , 0022-1007
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2001
    detail.hit.zdb_id: 1477240-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...