GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: BMC Biology, Springer Science and Business Media LLC, Vol. 20, No. 1 ( 2022-12)
    Abstract: DNA methylation is involved in the epigenetic regulation of gene expression during developmental processes and is primarily established by the DNA methyltransferase 3A (DNMT3A) and 3B (DNMT3B). DNMT3A is one of the most frequently mutated genes in clonal hematopoiesis and leukemia, indicating that it plays a crucial role for hematopoietic differentiation. However, the functional relevance of Dnmt3a for hematopoietic differentiation and hematological malignancies has mostly been analyzed in mice, with the specific role for human hematopoiesis remaining elusive. In this study, we therefore investigated if DNMT3A is essential for hematopoietic differentiation of human induced pluripotent stem cells (iPSCs). Results We generated iPSC lines with knockout of either exon 2, 19, or 23 and analyzed the impact of different DNMT3A exon knockouts on directed differentiation toward mesenchymal and hematopoietic lineages. Exon 19 −/− and 23 −/− lines displayed an almost entire absence of de novo DNA methylation during mesenchymal and hematopoietic differentiation. Yet, differentiation efficiency was only slightly reduced in exon 19 −/− and rather increased in exon 23 −/− lines, while there was no significant impact on gene expression in hematopoietic progenitors (iHPCs). Notably, DNMT3A −/− iHPCs recapitulate some DNA methylation patterns of acute myeloid leukemia (AML) with DNMT3A mutations. Furthermore, multicolor genetic barcoding revealed growth advantage of exon 23 −/− iHPCs in a syngeneic competitive differentiation assay. Conclusions Our results demonstrate that iPSCs with homozygous knockout of different exons of DNMT3A remain capable of mesenchymal and hematopoietic differentiation—and exon 23 −/− iHPCs even gained growth advantage—despite loss of almost the entire de novo DNA methylation. Partial recapitulation of DNA methylation patterns of AML with DNMT3A mutations by our DNMT3A knockout iHPCs indicates that our model system can help to elucidate mechanisms of clonal hematopoiesis.
    Type of Medium: Online Resource
    ISSN: 1741-7007
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2133020-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Chemistry, Oxford University Press (OUP), Vol. 68, No. 5 ( 2022-05-18), p. 646-656
    Abstract: Differential leukocyte counts are usually measured based on cellular morphology or surface marker expression. It has recently been shown that leukocyte counts can also be determined by cell-type–specific DNA methylation (DNAm). Such epigenetic leukocyte counting is applicable to small blood volumes and even frozen material, but for clinical translation, the method needs to be further refined and validated. Methods We further optimized and validated targeted DNAm assays for leukocyte deconvolution using 332 venous and 122 capillary blood samples from healthy donors. In addition, we tested 36 samples from ring trials and venous blood from 266 patients diagnosed with different hematological diseases. Deconvolution of cell types was determined with various models using DNAm values obtained by pyrosequencing or digital droplet PCR (ddPCR). Results Relative leukocyte quantification correlated with conventional blood counts for granulocytes, lymphocytes, B cells, T cells (CD4 or CD8), natural killer cells, and monocytes with pyrosequencing (r = 0.84; r = 0.82; r = 0.58; r = 0.50; r = 0.70; r = 0.61; and r = 0.59, respectively) and ddPCR measurements (r = 0.65; r = 0.79; r = 0.56; r = 0.57; r = 0.75; r = 0.49; and r = 0.46, respectively). In some patients, particularly with hematopoietic malignancies, we observed outliers in epigenetic leukocyte counts, which could be discerned if relative proportions of leukocyte subsets did not sum up to 100%. Furthermore, absolute quantification was obtained by spiking blood samples with a reference plasmid of known copy number. Conclusions Targeted DNAm analysis by pyrosequencing or ddPCR is a valid alternative to quantify leukocyte subsets, but some assays require further optimization.
    Type of Medium: Online Resource
    ISSN: 0009-9147 , 1530-8561
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 17 ( 2021-08-27), p. 9306-
    Abstract: Age is a major risk factor for severe outcome of the 2019 coronavirus disease (COVID-19). In this study, we followed the hypothesis that particularly patients with accelerated epigenetic age are affected by severe outcomes of COVID-19. We investigated various DNA methylation datasets of blood samples with epigenetic aging signatures and performed targeted bisulfite amplicon sequencing. Overall, epigenetic clocks closely correlated with the chronological age of patients, either with or without acute respiratory distress syndrome. Furthermore, lymphocytes did not reveal significantly accelerated telomere attrition. Thus, these biomarkers cannot reliably predict higher risk for severe COVID-19 infection in elderly patients.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2019-10-30)
    Abstract: Directed differentiation of induced pluripotent stem cells (iPSCs) towards specific lineages remains a major challenge in regenerative medicine, while there is a growing perception that this process can be influenced by the three-dimensional environment. In this study, we investigated whether iPSCs can differentiate towards mesenchymal stromal cells (MSCs) when embedded into fibrin hydrogels to enable a one-step differentiation procedure within a scaffold. Differentiation of iPSCs on tissue culture plastic or on top of fibrin hydrogels resulted in a typical MSC-like phenotype. In contrast, iPSCs embedded into fibrin gel gave rise to much smaller cells with heterogeneous growth patterns, absence of fibronectin, faint expression of CD73 and CD105, and reduced differentiation potential towards osteogenic and adipogenic lineage. Transcriptomic analysis demonstrated that characteristic genes for MSCs and extracellular matrix were upregulated on flat substrates, whereas genes of neural development were upregulated in 3D culture. Furthermore, the 3D culture had major effects on DNA methylation profiles, particularly within genes for neuronal and cardiovascular development, while there was no evidence for epigenetic maturation towards MSCs. Taken together, iPSCs could be differentiated towards MSCs on tissue culture plastic or on a flat fibrin hydrogel. In contrast, the differentiation process was heterogeneous and not directed towards MSCs when iPSCs were embedded into the hydrogel.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...