GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 1996
    In:  Pflügers Archiv - European Journal of Physiology Vol. 432, No. 4 ( 1996-8), p. 614-622
    In: Pflügers Archiv - European Journal of Physiology, Springer Science and Business Media LLC, Vol. 432, No. 4 ( 1996-8), p. 614-622
    Materialart: Online-Ressource
    ISSN: 0031-6768 , 1432-2013
    RVK:
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 1996
    ZDB Id: 1463014-X
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 1996
    In:  Pfl�gers Archiv European Journal of Physiology Vol. 433, No. 1-2 ( 1996-11-18), p. 180-187
    In: Pfl�gers Archiv European Journal of Physiology, Springer Science and Business Media LLC, Vol. 433, No. 1-2 ( 1996-11-18), p. 180-187
    Materialart: Online-Ressource
    ISSN: 0031-6768 , 1432-2013
    RVK:
    Sprache: Unbekannt
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 1996
    ZDB Id: 1463014-X
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Trends in Neurosciences, Elsevier BV, Vol. 24, No. 11 ( 2001-11), p. 637-643
    Materialart: Online-Ressource
    ISSN: 0166-2236
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2001
    ZDB Id: 2011000-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Society for Neuroscience ; 2005
    In:  The Journal of Neuroscience Vol. 25, No. 47 ( 2005-11-23), p. 10922-10929
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 25, No. 47 ( 2005-11-23), p. 10922-10929
    Kurzfassung: Using electrophysiology and styryl dye imaging, we studied the effect of phorbol 12-myristate 13-acetate (PMA) on activity-dependent and spontaneous vesicle recycling. In electrophysiological experiments, we found that the PMA effect depended on the maturational state of the synapses. Spontaneous neurotransmitter release from nascent synapses without a functional readily releasable pool (RRP) was unresponsive to PMA application. In contrast, mature synapses responded robustly to PMA application, consistent with previous studies. Using styryl dye imaging, we found that there was a PMA-dependent increase in the size of the RRP when PMA was present before, during, or after activity-dependent dye uptake, suggesting that this effect involves an increase in the population of the RRP by vesicles recruited from the reserve pool. Additionally, we found that when PMA was present during spontaneous dye uptake, there was an increase in dye labeling, and these additional dye-loaded vesicles showed rapid destaining in response to strong stimulation and were also releasable by hypertonic sucrose. In contrast, these observations were not reproducible when PMA treatment was performed after spontaneous dye uptake and extracellular dye washout. Together, these findings suggest that the increased spontaneous neurotransmission in the presence of PMA was attributable to release of vesicles from the RRP rather than an effect of PMA on the spontaneously recycling pool. Thus, the phorbol esters selectively regulate the activity-dependent pool of vesicles, indicating that priming mechanisms that prepare vesicles for fusion, which are targeted by phorbol esters, are different for the spontaneous and evoked forms of fusion.
    Materialart: Online-Ressource
    ISSN: 0270-6474 , 1529-2401
    Sprache: Englisch
    Verlag: Society for Neuroscience
    Publikationsdatum: 2005
    ZDB Id: 1475274-8
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Society for Neuroscience ; 2002
    In:  The Journal of Neuroscience Vol. 22, No. 3 ( 2002-02-01), p. 654-665
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 22, No. 3 ( 2002-02-01), p. 654-665
    Materialart: Online-Ressource
    ISSN: 0270-6474 , 1529-2401
    Sprache: Englisch
    Verlag: Society for Neuroscience
    Publikationsdatum: 2002
    ZDB Id: 1475274-8
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Society for Neuroscience ; 2004
    In:  The Journal of Neuroscience Vol. 24, No. 7 ( 2004-02-18), p. 1680-1688
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 24, No. 7 ( 2004-02-18), p. 1680-1688
    Kurzfassung: Studies on the mechanisms that underlie the function of small central presynaptic terminals have been hampered by the inaccessibility of these synapses to soluble reagents. Here, we permeabilized hippocampal synapses in culture, manipulated their interior, and monitored the resulting changes in vesicle mobilization with the styryl dye FM2-10. Using this method, we found that 1 μ m Ca 2+ after incubation with GTP or GTP-γ-S could mobilize ∼90% of the total recycling pool, whereas 1 μ m Ca 2+ application after dialysis of permeabilized synapses with GDP-β-S mobilized ∼30% of the recycling vesicles, presumably corresponding to the readily releasable pool. In electron micrographs of permeabilized hippocampal synapses stimulated with 1 μ m Ca 2+ , we could detect significant vesicle depletion after preincubation with GTP-γ-S, whereas preincubation with GDP-β-S left the total vesicle pool relatively intact. Taken together, in this system replenishment of the readily releasable pool by the reserve vesicles was strictly GTP dependent. In contrast, vesicle replenishment and release did not require ATP or N -ethylmaleimide-sensitive factor (NSF); however, this process involved formation of new soluble NSF-attachment protein receptor (SNARE) complexes as judged by its sensitivity to tetanus toxin. These results suggest that in hippocampal synapses, vesicle mobilization and replenishment of the readily releasable pool require GTP and Ca 2+ but do not necessitate ATP-dependent priming and SNARE recycling.
    Materialart: Online-Ressource
    ISSN: 0270-6474 , 1529-2401
    Sprache: Englisch
    Verlag: Society for Neuroscience
    Publikationsdatum: 2004
    ZDB Id: 1475274-8
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    American Association for the Advancement of Science (AAAS) ; 2001
    In:  Science Vol. 294, No. 5544 ( 2001-11-02), p. 1117-1122
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 294, No. 5544 ( 2001-11-02), p. 1117-1122
    Kurzfassung: SNAREs (soluble NSF-attachment protein receptors) are generally acknowledged as central components of membrane fusion reactions, but their precise function has remained enigmatic. Competing hypotheses suggest roles for SNAREs in mediating the specificity of fusion, catalyzing fusion, or actually executing fusion. We generated knockout mice lacking synaptobrevin/VAMP 2, the vesicular SNARE protein responsible for synaptic vesicle fusion in forebrain synapses, to make use of the exquisite temporal resolution of electrophysiology in measuring fusion. In the absence of synaptobrevin 2, spontaneous synaptic vesicle fusion and fusion induced by hypertonic sucrose were decreased ∼10-fold, but fast Ca 2+ -triggered fusion was decreased more than 100-fold. Thus, synaptobrevin 2 may function in catalyzing fusion reactions and stabilizing fusion intermediates but is not absolutely required for synaptic fusion.
    Materialart: Online-Ressource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for the Advancement of Science (AAAS)
    Publikationsdatum: 2001
    ZDB Id: 128410-1
    ZDB Id: 2066996-3
    ZDB Id: 2060783-0
    SSG: 11
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Society for Neuroscience ; 2005
    In:  The Journal of Neuroscience Vol. 25, No. 1 ( 2005-01-05), p. 260-270
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 25, No. 1 ( 2005-01-05), p. 260-270
    Kurzfassung: Synaptic cell adhesion is central for synapse formation and function. Recently, the synaptic cell adhesion molecules neuroligin 1 (NL1) and SynCAM were shown to induce presynaptic differentiation in cocultured neurons when expressed in a non-neuronal cell. However, it is uncertain how similar the resulting artificial synapses are to regular synapses. Are these molecules isofunctional, or do all neuronal cell adhesion molecules nonspecifically activate synapse formation? To address these questions, we analyzed the properties of artificial synapses induced by NL1 and SynCAM, compared the actions of these molecules with those of other neuronal cell adhesion molecules, and examined the functional effects of NL1 and SynCAM overexpression in neurons. We found that only NL1 and SynCAM specifically induced presynaptic differentiation in cocultured neurons. The induced nerve terminals were capable of both spontaneous and evoked neurotransmitter release, suggesting that a full secretory apparatus was assembled. By all measures, SynCAM- and NL1-induced artificial synapses were identical. Overexpression in neurons demonstrated that only SynCAM, but not NL1, increased synaptic function in immature developing excitatory neurons after 8 d in vitro . Tests of chimeric molecules revealed that the dominant-positive effect of SynCAM on synaptic function in developing neurons was mediated by its intracellular cytoplasmic tail. Interestingly, morphological analysis of neurons overexpressing SynCAM or NL1 showed the opposite of the predictions from electrophysiological results. In this case, only NL1 increased the synapse number, suggesting a role for NL1 in morphological synapse induction. These results suggest that both NL1 and SynCAM act similarly and specifically in artificial synapse induction but that this process does not reflect a shared physiological function of these molecules.
    Materialart: Online-Ressource
    ISSN: 0270-6474 , 1529-2401
    Sprache: Englisch
    Verlag: Society for Neuroscience
    Publikationsdatum: 2005
    ZDB Id: 1475274-8
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    Society for Neuroscience ; 2002
    In:  The Journal of Neuroscience Vol. 22, No. 5 ( 2002-03-01), p. 1608-1617
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 22, No. 5 ( 2002-03-01), p. 1608-1617
    Materialart: Online-Ressource
    ISSN: 0270-6474 , 1529-2401
    Sprache: Englisch
    Verlag: Society for Neuroscience
    Publikationsdatum: 2002
    ZDB Id: 1475274-8
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    Rockefeller University Press ; 2000
    In:  The Journal of Cell Biology Vol. 150, No. 5 ( 2000-09-04), p. 1101-1112
    In: The Journal of Cell Biology, Rockefeller University Press, Vol. 150, No. 5 ( 2000-09-04), p. 1101-1112
    Kurzfassung: The localization of various Ca2+ transport and signaling proteins in secretory cells is highly restricted, resulting in polarized agonist-stimulated Ca2+ waves. In the present work, we examined the possible roles of the Sec6/8 complex or the exocyst in polarized Ca2+ signaling in pancreatic acinar cells. Immunolocalization by confocal microscopy showed that the Sec6/8 complex is excluded from tight junctions and secretory granules in these cells. The Sec6/8 complex was found in at least two cellular compartments, part of the complex showed similar, but not identical, localization with the Golgi apparatus and part of the complex associated with Ca2+ signaling proteins next to the plasma membrane at the apical pole. Accordingly, immunoprecipitation (IP) of Sec8 did not coimmunoprecipitate βCOP, Golgi 58K protein, or mannosidase II, all Golgi-resident proteins. By contrast, IP of Sec8 coimmunoprecipitates Sec6, type 3 inositol 1,4,5-trisphosphate receptors (IP3R3), and the Gβγ subunit of G proteins from pancreatic acinar cell extracts. Furthermore, the anti-Sec8 antibodies coimmunoprecipitate actin, Sec6, the plasma membrane Ca2+ pump, the G protein subunits Gαq and Gβγ, the β1 isoform of phospholipase C, and the ER resident IP3R1 from brain microsomal extracts. Antibodies against the various signaling and Ca2+ transport proteins coimmunoprecipitate Sec8 and the other signaling proteins. Dissociation of actin filaments in the immunoprecipitate had no effect on the interaction between Sec6 and Sec8, but released the actin and dissociated the interaction between the Sec6/8 complex and Ca2+ signaling proteins. Hence, the interaction between the Sec6/8 and Ca2+ signaling complexes is likely mediated by the actin cytoskeleton. The anti-Sec6 and anti-Sec8 antibodies inhibited Ca2+ signaling at a step upstream of Ca2+ release by IP3. Disruption of the actin cytoskeleton with latrunculin B in intact cells resulted in partial translocation of Sec6 and Sec8 from membranes to the cytosol and interfered with propagation of agonist-evoked Ca2+ waves. Our results suggest that the Sec6/8 complex has multiple roles in secretory cells including governing the polarized expression of Ca2+ signaling complexes and regulation of their activity.
    Materialart: Online-Ressource
    ISSN: 0021-9525 , 1540-8140
    RVK:
    Sprache: Englisch
    Verlag: Rockefeller University Press
    Publikationsdatum: 2000
    ZDB Id: 1421310-2
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...