GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    SAGE Publications ; 2015
    In:  The International Journal of High Performance Computing Applications Vol. 29, No. 3 ( 2015-08), p. 261-273
    In: The International Journal of High Performance Computing Applications, SAGE Publications, Vol. 29, No. 3 ( 2015-08), p. 261-273
    Abstract: Today the European Centre for Medium Range Weather Forecasts (ECMWF) runs a 16 km global T1279 operational weather forecast model using 1536 cores of an IBM Power7. Following the historical evolution in resolution upgrades, the ECMWF could expect to be running a 2.5 km global forecast model by 2030 on an exascale system that should be available and hopefully affordable by then. To achieve this would require the Integrated Forecasting System (IFS) to run efficiently on about 1000 times the number of cores it uses today. In a step towards this goal, the ECMWF have demonstrated the IFS running a 10 km global model efficiently on over 40,000 cores of HECToR a Cray XE6 at the Edinburgh Parallel Computing Centre. However, getting to over a million cores remains a formidable challenge, and many scalability improvements have yet to be implemented. The ECMWF is exploring the use of Fortran2008 coarrays; in particular, it is possibly the first time that coarrays have been used in a world-leading production application within the context of OpenMP parallel regions. The purpose of these optimisations is primarily to allow the overlap of computation and communication, and further, in the semi-Lagrangian advection scheme, to reduce the volume of data communicated. The importance of this research is such that if these and other planned developments are successful, the IFS model may continue to use the spectral transform method to 2030 and beyond on an exascale-sized system. The current status of the coarray scalability developments within the IFS are described together with a brief outline of future developments.
    Type of Medium: Online Resource
    ISSN: 1094-3420 , 1741-2846
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2015
    detail.hit.zdb_id: 2017480-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 12, No. 10 ( 2019-10-22), p. 4425-4441
    Abstract: Abstract. In the simulation of complex multi-scale flows arising in weather and climate modelling, one of the biggest challenges is to satisfy strict service requirements in terms of time to solution and to satisfy budgetary constraints in terms of energy to solution, without compromising the accuracy and stability of the application. These simulations require algorithms that minimise the energy footprint along with the time required to produce a solution, maintain the physically required level of accuracy, are numerically stable, and are resilient in case of hardware failure. The European Centre for Medium-Range Weather Forecasts (ECMWF) led the ESCAPE (Energy-efficient Scalable Algorithms for Weather Prediction at Exascale) project, funded by Horizon 2020 (H2020) under the FET-HPC (Future and Emerging Technologies in High Performance Computing) initiative. The goal of ESCAPE was to develop a sustainable strategy to evolve weather and climate prediction models to next-generation computing technologies. The project partners incorporate the expertise of leading European regional forecasting consortia, university research, experienced high-performance computing centres, and hardware vendors. This paper presents an overview of the ESCAPE strategy: (i) identify domain-specific key algorithmic motifs in weather prediction and climate models (which we term Weather & Climate Dwarfs), (ii) categorise them in terms of computational and communication patterns while (iii) adapting them to different hardware architectures with alternative programming models, (iv) analyse the challenges in optimising, and (v) find alternative algorithms for the same scheme. The participating weather prediction models are the following: IFS (Integrated Forecasting System); ALARO, a combination of AROME (Application de la Recherche à l'Opérationnel à Meso-Echelle) and ALADIN (Aire Limitée Adaptation Dynamique Développement International); and COSMO–EULAG, a combination of COSMO (Consortium for Small-scale Modeling) and EULAG (Eulerian and semi-Lagrangian fluid solver). For many of the weather and climate dwarfs ESCAPE provides prototype implementations on different hardware architectures (mainly Intel Skylake CPUs, NVIDIA GPUs, Intel Xeon Phi, Optalysys optical processor) with different programming models. The spectral transform dwarf represents a detailed example of the co-design cycle of an ESCAPE dwarf. The dwarf concept has proven to be extremely useful for the rapid prototyping of alternative algorithms and their interaction with hardware; e.g. the use of a domain-specific language (DSL). Manual adaptations have led to substantial accelerations of key algorithms in numerical weather prediction (NWP) but are not a general recipe for the performance portability of complex NWP models. Existing DSLs are found to require further evolution but are promising tools for achieving the latter. Measurements of energy and time to solution suggest that a future focus needs to be on exploiting the simultaneous use of all available resources in hybrid CPU–GPU arrangements.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Monthly Weather Review Vol. 136, No. 12 ( 2008-12-01), p. 4760-4772
    In: Monthly Weather Review, American Meteorological Society, Vol. 136, No. 12 ( 2008-12-01), p. 4760-4772
    Abstract: A specific interface between the radiation transfer calculations and the rest of the ECMWF model was introduced in 2003, potentially providing substantial economy in computer time by reducing the spatial resolution at which radiation transfer is evaluated, without incurring some of the deficiencies produced by the sampling strategy previously used in the ECMWF model. The introduction of a new more-computer-intensive radiation package (McRad) in June 2007 has led to a differentiated use of this interface depending on the applications. The history of the interface, how it is used, and its impact when using the new radiation scheme are discussed here. For a given model resolution, the impact of a lower-resolution radiation grid on the model behavior is studied here, in the context of 10-day forecasts at high resolution (TL799L91), of medium-resolution forecasts (TL399L62) used in the Ensemble Prediction System (EPS), and of low-resolution simulations (TL159L91) as used for model development and seasonal forecasts with an interactive ocean. Results for the high-resolution forecasts are compared in terms of objective scores and of the quality of “surface” parameters (total cloud cover, 2-m temperature and specific humidity, and 10-m wind) usually verified in a meteorological context. For the medium-resolution forecasts, the impact of the radiation grid is studied in terms of the potential increase in the efficiency of the EPS system without deteriorating the probabilistic skill. The impact of changes in the radiation grid resolution on the low-resolution versions of model is discussed in terms of cloud–radiation interactions and ocean surface temperature. For these operational applications, a radiation grid with a coarsening factor even as large as 2.5 for TL799L91 and TL159L91 and 4.2 for the EPS TL399L62 is shown to give results free of any systematic differences linked to the spatial interpolation and to the coarser resolution of both the inputs to and the outputs from the radiation transfer schemes.
    Type of Medium: Online Resource
    ISSN: 1520-0493 , 0027-0644
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Elsevier BV ; 2016
    In:  Journal of Computational Physics Vol. 314 ( 2016-06), p. 287-304
    In: Journal of Computational Physics, Elsevier BV, Vol. 314 ( 2016-06), p. 287-304
    Type of Medium: Online Resource
    ISSN: 0021-9991
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2016
    detail.hit.zdb_id: 160508-2
    detail.hit.zdb_id: 1469164-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Monthly Weather Review Vol. 141, No. 10 ( 2013-10-01), p. 3450-3461
    In: Monthly Weather Review, American Meteorological Society, Vol. 141, No. 10 ( 2013-10-01), p. 3450-3461
    Abstract: Very high-resolution spectral transform models are believed to become prohibitively expensive because of the relative increase in computational cost of the Legendre transforms compared to the gridpoint computations. This article describes the implementation of a practical fast spherical harmonics transform into the Integrated Forecast System (IFS) at ECMWF. Details of the accuracy of the computations, of the parallelization, and memory use are discussed. Results are presented that demonstrate the cost effectiveness and accuracy of the fast spherical harmonics transform, successfully mitigating the concern about the disproportionally growing computational cost. Using the new transforms, the first T7999 global weather forecast (equivalent to ≈2.5-km horizontal grid size) using a spectral transform model has been produced.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...