GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Materials, MDPI AG, Vol. 15, No. 22 ( 2022-11-11), p. 7982-
    Abstract: In this study, two types of mesoporous silica with different pore structures and volumes were synthesized by the soft-templating method. The two types of mesoporous silica, type MCM-41 and MCM-48, were loaded with three polyphenols—caffeic acid, p-coumaric acid and trans-ferulic acid—in the same ratio of mesoporous silica:polyphenol (1:0.4 w/w). The materials obtained were characterized from a morphological and structural point of view through different analysis techniques. Through X-ray diffraction (XRD), the crystallization plane and the ordered structure of the mesoporous silica were observed. The difference between the two types of materials containing MCM-41 and MCM-48 was observed through the different morphologies of the silica particles through scanning electron microscopy (SEM) and also through the Brunauer–Emmet–Teller (BET) analysis, that the surface areas and volumes of pores was different between the two types of mesoporous silica, and, after loading with polyphenols, the values were reduced. The characteristic bands of silica and of polyphenols were easily observed by Fourier-transform infrared spectroscopy (FTIR), and, through thermogravimetric analysis (TGA), the residual mass was determined and the estimated amount of polyphenol in the materials and the efficient loading of mesoporous silica with polyphenols could be determined. The in vitro study was performed in two types of simulated biological fluids with different pH—simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The obtained materials could be used in various biomedical applications as systems with controlled release of natural polyphenols and the most suitable application could be as food supplements especially when a mixture of such materials is used or when the polyphenols are co-loaded within the mesoporous silica.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Materials, MDPI AG, Vol. 16, No. 15 ( 2023-07-27), p. 5279-
    Abstract: Polymeric biocomposites based on TPU/recycled TPUW/mixed leather and SBR rubber waste unmodified/modified with polydimethylsiloxane/PE-g-MA in different percentages were made via the mixing technique on a Plasti-Corder Brabender mixer with an internal capacity of 350 cm3. The waste, which came from the shoe industry, was cryogenically ground with the help of a cryogenic cyclone mill at micrometric sizes and different speeds. For the tests, standard plates of 150 × 150 × 2 mm were obtained in a laboratory-scale hydraulic press via the method of compression between its plates, with well-established parameters. The biocomposites were tested physico-mechanically and rheologically (MFI) according to the standards in force on polymer-specific equipment, also via FT-IR spectroscopy and microscopy, as well as via differential scanning calorimetry—DSC. Following the tests carried out, according to the standard for use in the footwear industry, at least two samples present optimal values (of interest) suitable for use in the footwear industry by injection or pressing in forming moulds.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 6 ( 2023-03-16), p. 5677-
    Abstract: In this paper, we report the synthesis of ZnO nanoparticles (NPs) by forced solvolysis of Zn(CH3COO)2·2H2O in alcohols with a different number of –OH groups. We study the influence of alcohol type (n-butanol, ethylene glycol and glycerin) on the size, morphology, and properties of the obtained ZnO NPs. The smallest polyhedral ZnO NPs ( 〈 30 nm) were obtained in n-butanol, while in ethylene glycol the NPs measured on average 44 nm and were rounded. Polycrystalline particles of 120 nm were obtained in glycerin only after water refluxing. In addition, here, we report the photocatalytic activity, against a dye mixture, of three model pollutants: methyl orange (MO), methylene blue (MB), and rhodamine B (RhB), a model closer to real situations where water is polluted with many chemicals. All samples exhibited good photocatalytic activity against the dye mixture, with degradation efficiency reaching 99.99%. The sample with smallest nanoparticles maintained a high efficiency 〉 90%, over five catalytic cycles. Antibacterial tests were conducted against Gram-negative strains Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, and Escherichia coli, and Gram-positive strains Enterococcus faecalis, Bacillus subtilis, Staphylococcus aureus, and Bacillus cereus. The ZnO samples presented strong inhibition of planktonic growth for all tested strains, indicating that they can be used for antibacterial applications, such as water purification.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Gels, MDPI AG, Vol. 9, No. 4 ( 2023-04-02), p. 295-
    Abstract: The aim of the present study was to obtain a hydrogel-based film as a carrier for the sustained and controlled release of vancomycin, an antibiotic commonly used in various types of infections. Considering the high-water solubility of vancomycin ( 〉 50 mg/mL) and the aqueous medium underlying the exudates, a prolonged release of vancomycin from an MCM-41 carrier was sought. The present work focused on the synthesis of malic acid coated magnetite (Fe3O4/malic) by co-precipitation, synthesis of MCM-41 by a sol-gel method and loading of MCM-41 with vancomycin, and their use in alginate films for wound dressing. The nanoparticles obtained were physically mixed and embedded in the alginate gel. Prior to incorporation, the nanoparticles were characterized by XRD, FT-IR and FT-Raman spectroscopy, TGA-DSC and DLS. The films were prepared by a simple casting method and were further cross-linked and examined for possible heterogeneities by means of FT-IR microscopy and SEM. The degree of swelling and the water vapor transmission rate were determined, considering their potential use as wound dressings. The obtained films show morpho-structural homogeneity, sustained release over 48 h and a strong synergistic enhancement of the antimicrobial activity as a consequence of the hybrid nature of these films. The antimicrobial efficacy was tested against S. aureus, two strains of E. faecalis (including vancomycin-resistant Enterococcus, VRE) and C. albicans. The incorporation of magnetite was also considered as an external triggering component in case the films were used as a magneto-responsive smart dressing to stimulate vancomycin diffusion.
    Type of Medium: Online Resource
    ISSN: 2310-2861
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2813982-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Nanomaterials, MDPI AG, Vol. 12, No. 11 ( 2022-06-06), p. 1943-
    Abstract: In this paper, novel drug delivery systems (DDS) were designed based on graphene oxide (GO) as nanocarrier, loaded with two natural substances (quercetin (Qu) and juglone (Ju)) at different concentrations. The chemical structure and morphology of the synthesized GO-based materials were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Raman spectroscopy. The antibacterial activity was evaluated against standard strains, Staphylococcus aureus ATCC 6538, Escherichia coli ATCC 8739, and Candida albicans ATCC 10231. Results demonstrated excellent antimicrobial activity, with a 5 log reduction of E. coli and a 1 log to 3.04 log reduction of S. aureus populations. Reduction rates were above 90%. Biocompatibility tests were also performed on GO-based materials, and the results showed biocompatible behavior for both L929 fibroblast cell line and BT474 breast cancer cells at lower concentrations. The identity of Qu and Ju was demonstrated by matrix-assisted laser desorption/ionization (MALDI) analysis, showing the compounds’ mass with high accuracy. In addition, specific properties of GO made it a versatile matrix for the MALDI analysis. The results of this study indicated that GO-based platforms may be suitable for applications in many areas for the effective and beneficial use of hydrophobic compounds such as Ju and Qu.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Nanomaterials, MDPI AG, Vol. 12, No. 20 ( 2022-10-13), p. 3598-
    Abstract: Given the demanding use of controlled drug delivery systems, our attention was focused on developing a magnetic film that can be triggered in the presence of a magnetic field for both drug delivery and the actuating mechanism in micropump biomedical microelectromechanical systems (BioMEMS). Magnetic alginate films were fabricated in three steps: the co-precipitation of iron salts in an alkaline environment to obtain magnetite nanoparticles (Fe3O4), the mixing of the obtained nanoparticles with a sodium alginate solution containing glycerol as a plasticizer and folic acid as an active substance, and finally the casting of the final solution in a Petri dish followed by cross-linking with calcium chloride solution. Magnetite nanoparticles were incorporated in the alginate matrix because of the well-established biocompatibility of both materials, a property that would make the film convenient for implantable BioMEMS devices. The obtained film was analyzed in terms of its magnetic, structural, and morphological properties. To demonstrate the hypothesis that the magnetic field can be used to trigger drug release from the films, we studied the release profile in an aqueous medium (pH = 8) using a NdFeB magnet as a triggering factor.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Nanomaterials, MDPI AG, Vol. 11, No. 9 ( 2021-09-13), p. 2377-
    Abstract: Replacing the petroleum-based materials in the food industry is one of the main objectives of the scientists and decision makers worldwide. Biodegradable packaging will help diminish the environmental impact of human activity. Improving such biodegradable packaging materials by adding antimicrobial activity will not only extend the shelf life of foodstuff, but will also eliminate some health hazards associated with food borne diseases, and by diminishing the food spoilage will decrease the food waste. The objective of this research was to obtain innovative antibacterial films based on a biodegradable polymer, namely alginate. Films were characterized by environmental scanning electron microscopy (ESEM), Fourier-transform infrared spectroscopy (FTIR) and microscopy, complex thermal analysis (TG-DSC-FTIR), UV-Vis and fluorescence spectroscopy. Water vapor permeability and swelling behavior were also determined. As antimicrobial agents, we used silver spherical nanoparticles (Ag NPs) and lemongrass essential oil (LGO), which were found to act in a synergic way. The obtained films exhibited strong antibacterial activity against tested strains, two Gram-positive (Bacillus cereus and Staphylococcus aureus) and two Gram-negative (Escherichia coli and Salmonella Typhi). Best results were obtained against Bacillus cereus. The tests indicate that the antimicrobial films can be used as packaging, preserving the color, surface texture, and softness of cheese for 14 days. At the same time, the color of the films changed (darkened) as a function of temperature and light presence, a feature that can be used to monitor the storage conditions for sensitive food.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Polymers Vol. 14, No. 24 ( 2022-12-16), p. 5523-
    In: Polymers, MDPI AG, Vol. 14, No. 24 ( 2022-12-16), p. 5523-
    Abstract: In this paper, two chelate resins prepared by a simple procedure were used for the removal of Cd2+, Ni2+, Cu2+, and Pb2+ (M2+) from aqueous solutions. Amberlite IRA 402 strongly basic anion exchange resin in Cl− form (IRA 402 (Cl−) together with Amberlite XAD7HP acrylic ester co-polymer (XAD7HP) were functionalized with chelating agent Direct red 23 (DR 23). The chelate resins (IRA 402-DR 23 and XAD7HP-DR 23) were obtained in batch mode. The influence of interaction time, pH and the initial concentration of DR 23 solution was investigated using UV-Vis spectrometry. The time necessary to reach equilibrium was 90 min for both resins. A negligible effect of adsorption capacity (Qe) was obtained when the DR 23 solution was adjusted at a pH of 2 and 7.9. The Qe of the XAD7HP resin (27 mg DR 23/g) is greater than for IRA 402 (Cl−) (21 mg DR 23/g). The efficiency of chelating resins was checked via M2+ removal determined by the atomic adsorption spectrometry method (AAS). The M2+ removal by the IRA 402-DR 23 and XAD7HP-DR 23 showed that the latter is more efficient for this propose. As a consequence, for divalent ions, the chelated resins followed the selectivity sequence: Cd2+ 〉 Cu2+ 〉 Ni2+ 〉 Pb2+. Additionally, Cd2+, Cu2+ and Ni2+ removal was fitted very well with the Freundlich model in terms of height correlation coefficient (R2), while Pb2+ was best fitted with Langmuir model for IRA 402-DR 23, the Cu2+ removal is described by the Langmuir model, and Cd2+, Ni2+ and Pb2+ removal was found to be in concordance with the Freundlich model for XAD7HP-DR 23. The M2+ elution from the chelate resins was carried out using 2 M HCl. The greater M2+ recovery from chelating resins mass confirmed their sustainability. The chelate resins used before and after M2+ removal by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis were evaluated.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Polymers, MDPI AG, Vol. 15, No. 10 ( 2023-05-10), p. 2251-
    Abstract: In the present study, two chelating resins were prepared and used for simultaneous adsorption of toxic metal ions, i.e., Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ (MX+). In the first step, chelating resins were prepared starting with styrene-divinylbenzene resin, a strong basic anion exchanger Amberlite IRA 402(Cl−) with two chelating agents, i.e., tartrazine (TAR) and amido black 10B (AB 10B). Key parameters such as contact time, pH, initial concentration, and stability were evaluated for the obtained chelating resins (IRA 402/TAR and IRA 402/AB 10B). The obtained chelating resins show excellent stability in 2M HCl, 2M NaOH, and also in ethanol (EtOH) medium. The stability of the chelating resins decreased when the combined mixture (2M HCl:EtOH = 2:1) was added. The above-mentioned aspect was more evident for IRA 402/TAR compared to IRA 402/AB 10B. Taking into account the higher stability of the IRA 402/TAR and IRA 402/AB 10B resins, in a second step, adsorption studies were carried out on complex acid effluents polluted with MX+. The adsorption of MX+ from an acidic aqueous medium on the chelating resins was evaluated using the ICP-MS method. The following affinity series under competitive analysis for IRA 402/TAR was obtained: Fe3+(44 µg/g) 〉 Ni2+(39.8 µg/g) 〉 Cd2+(34 µg/g) 〉 Cr3+(33.2 µg/g) 〉 Pb2+(32.7 µg/g) 〉 Cu2+ (32.5 µg/g) 〉 Mn2+(31 µg/g) 〉 Co2+(29 µg/g) 〉 Zn2+ (27.5 µg/g). While for IRA 402/AB 10B, the following behavior was observed: Fe3+(58 µg/g) 〉 Ni2+(43.5 µg/g) 〉 Cd2+(43 µg/g) 〉 Cu2+(38 µg/g) 〉 Cr3+(35 µg/g) 〉 Pb2+(34.5 µg/g) 〉 Co2+(32.8 µg/g) 〉 Mn2+(33 µg/g) 〉 Zn2+(32 µg/g), consistent with the decreasing affinity of MX+ for chelate resin. The chelating resins were characterized using TG, FTIR, and SEM analysis. The obtained results showed that the chelating resins prepared have promising potential for wastewater treatment in the context of the circular economy approach.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Revista de Chimie, Revista de Chimie SRL, Vol. 71, No. 3 ( 2001-1-1), p. 136-142
    Abstract: Cotoneaster horizontalis Decne. and Cotoneaster microphyllus Wall. ex Lindl. species are two creeping bushes, commonly used as ornamental plants in gardens and parks. The aim of this paper was to assess the concentrations of some classes of bioactive compounds classes, carotenoids, flavonoids and total phenolic compounds, in fresh fruits of these species. Carotenoids and flavonoids were determined through acetone and methanol extraction followed by spectrophotometry. For total phenolics, methanol extraction and a spectrophotometric Folin-Ciocalteu method was used. The total antioxidant capacity was quantified through photochemiluminescence method by comparison with the standard substance used for calibration, Trolox� as tocopherol analogue (ACL procedure) using Photochem apparatus, Analytik Jena AG, Germany. Average values found in Cotoneaster horizontalis and Cotoneaster microphyllus fruit tissue were 380.63 mg/kg, respectively 179.63 mg/kg, carotenoids; 8036.07 mg/kg, respectively 6888.06 mg/kg flavonoids; and 16342.06 mg/kg GAE, respectively 18631.35 mg/kg GAE total phenolic compounds. These values are comparable to those found in other wild and cultivated related Rosaceae, including domestic rowans. Cotoneaster microphyllus fruits emphasized an increased antioxidant activity (up to 39.69 μmol Trolox equivalent/g dry weight).
    Type of Medium: Online Resource
    ISSN: 0034-7752 , 2668-8212
    Language: English
    Publisher: Revista de Chimie SRL
    Publication Date: 2001
    detail.hit.zdb_id: 2488208-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...