GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 22 ( 2022-11-18), p. 14300-
    Abstract: Integrase inhibitors (INIs) are an important class of drugs for treating HIV-2 infection, given the limited number of drugs active against this virus. While the clinical efficacy of raltegravir and dolutegravir is well established, the clinical efficacy of bictegravir for treating HIV-2 infected patients has not been determined. Little information is available regarding the activity of bictegravir against HIV-2 isolates from patients failing raltegravir-based therapy. In this study, we examined the phenotypic and matched genotypic susceptibility of HIV-2 primary isolates from raltegravir-naïve and raltegravir-failing patients to raltegravir, dolutegravir, and bictegravir, and to the new spiro-β-lactam BSS-730A. The instantaneous inhibitory potential (IIP) was calculated to help predict the clinical activity of bictegravir and BSS-730A. Isolates from raltegravir-naïve patients were highly sensitive to all INIs and BSS-730A. Combined integrase mutations E92A and Q148K conferred high-level resistance to raltegravir, and E92Q and T97A conferred resistance to raltegravir and dolutegravir. The antiviral activity of bictegravir and BSS-730A was not affected by these mutations. BSS-730A displayed strong antiviral synergism with raltegravir. Mean IIP values at Cmax were similar for all INIs and were not significantly affected by resistance mutations. IIP values were significantly higher for BSS-730A than for INIs. The high IIP values of bictegravir and BSS-730A for raltegravir-naïve and raltegravir-resistant HIV-2 isolates highlight their potential value for treating HIV-2 infection. Overall, the results are consistent with the high clinical efficacy of raltegravir and dolutegravir for HIV-2 infection and suggest a promising clinical profile for bictegravir and BSS-730A.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  International Journal of Molecular Sciences Vol. 24, No. 6 ( 2023-03-21), p. 5905-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 6 ( 2023-03-21), p. 5905-
    Abstract: Currently, it is estimated that 1–2 million people worldwide are infected with HIV-2, accounting for 3–5% of the global burden of HIV. The course of HIV-2 infection is longer compared to HIV-1 infection, but without effective antiretroviral therapy (ART), a substantial proportion of infected patients will progress to AIDS and die. Antiretroviral drugs in clinical use were designed for HIV-1 and, unfortunately, some do not work as well, or do not work at all, for HIV-2. This is the case for non-nucleoside reverse transcriptase inhibitors (NNRTIs), the fusion inhibitor enfuvirtide (T-20), most protease inhibitors (PIs), the attachment inhibitor fostemsavir and most broadly neutralizing antibodies. Integrase inhibitors work well against HIV-2 and are included in first-line therapeutic regimens for HIV-2-infected patients. However, rapid emergence of drug resistance and cross-resistance within each drug class dramatically reduces second-line treatment options. New drugs are needed to treat infection with drug-resistant isolates. Here, we review the therapeutic armamentarium available to treat HIV-2-infected patients, as well as promising drugs in development. We also review HIV-2 drug resistance mutations and resistance pathways that develop in HIV-2-infected patients under treatment.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 10, No. 6 ( 2022-12-21)
    Abstract: A minority of HIV-1-infected patients produce broadly neutralizing antibodies (bNAbs). Identification of viral and host correlates of bNAb production may help develop vaccines. We aimed to characterize the neutralizing response and viral and host-associated factors in Angola, which has one of the oldest, most dynamic, and most diverse HIV-1 epidemics in the world. Three hundred twenty-two HIV-1-infected adults from Angola were included in this retrospective study. Phylogenetic analysis of C2V3C3 env gene sequences was used for virus subtyping. Env-binding antibody reactivity was tested against polypeptides comprising the C2, V3, and C3 regions. Neutralizing-antibody responses were determined against a reference panel of tier 2 Env pseudoviruses in TZM-bl cells; neutralizing epitope specificities were predicted using ClustVis. All subtypes were found, along with untypeable strains and recombinant forms. Notably, 56% of the patients developed cross neutralizing, broadly neutralizing, or elite neutralizing responses. Broad and elite neutralization was associated with longer infection time, subtype C, lower CD4 + T cell counts, higher age, and higher titer of C2V3C3-specific antibodies relative to failure to develop bNAbs. Neutralizing antibodies targeted the V3-glycan supersite in most patients. V3 and C3 regions were significantly less variable in elite neutralizers than in weak neutralizers and nonneutralizers, suggesting an active role of V3C3-directed bNAbs in controlling HIV-1 replication and diversification. In conclusion, prolonged and low-level envelope V3C3 stimulation by highly diverse and ancestral HIV-1 isolates promotes the frequent elicitation of bNAbs. These results provide important clues for the development of an effective HIV-1 vaccine. IMPORTANCE Studies on neutralization by antibodies and their determinants in HIV-1-infected individuals have mostly been conducted in relatively recent epidemics caused by subtype B and C viruses. Results have suggested that elicitation of broadly neutralizing antibodies (bNAbs) is uncommon. The mechanisms underlying the elicitation of bNAbs are still largely unknown. We performed the first characterization of the plasma neutralizing response in a cohort of HIV-1-infected patients from Angola. Angola is characterized by an old and dynamic epidemic caused by highly diverse HIV-1 variants. Remarkably, more than half of the patients produced bNAbs, mostly targeting the V3-glycan supersite in HIV-1. This was associated with higher age, longer infection time, lower CD4 + T cell counts, subtype C infection, or higher titer of C2V3C3-specific antibodies relative to patients that did not develop bNAbs. These results may help develop the next generation of vaccine candidates for HIV-1.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Clinical Microbiology, American Society for Microbiology, Vol. 55, No. 8 ( 2017-08), p. 2367-2379
    Abstract: HIV plasma viral load is an established marker of disease progression and of response to antiretroviral therapy, but currently there is no commercial assay validated for the quantification of viral load in HIV-2-infected individuals. We sought to make the first clinical evaluation of Cavidi ExaVir Load (version 3) in HIV-2-infected patients. Samples were collected from a total of 102 individuals living in Cape Verde, and the HIV-2 viral load was quantified by both ExaVir Load and a reference in-house real-time quantitative PCR (qPCR) used in Portugal in 91 samples. The associations between viral load and clinical prognostic variables (CD4 + T cell counts and antiretroviral therapy status) were similar for measurements obtained using ExaVir Load and qPCR. There was no difference between the two methods in the capacity to discriminate between nonquantifiable and quantifiable HIV-2 in the plasma. In samples with an HIV-2 viral load quantifiable by both methods ( n = 27), the measurements were highly correlated (Pearson r = 0.908), but the ExaVir Load values were systematically higher relative to those determined by qPCR (median difference, 0.942 log 10 copies/ml). A regression model was derived that enables the conversion of ExaVir Load results to those that would have been obtained by the reference qPCR. In conclusion, ExaVir Load version 3 is a reliable commercial assay to measure viral load in HIV-2-infected patients and therefore a valuable alternative to the in-house assays in current use.
    Type of Medium: Online Resource
    ISSN: 0095-1137 , 1098-660X
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 1498353-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Viruses Vol. 12, No. 12 ( 2020-12-15), p. 1443-
    In: Viruses, MDPI AG, Vol. 12, No. 12 ( 2020-12-15), p. 1443-
    Abstract: HIV-1/AIDS remains a global public health problem. The world health organization (WHO) reported at the end of 2019 that 38 million people were living with HIV-1 worldwide, of which only 67% were accessing antiretroviral therapy (ART). Despite great success in the clinical management of HIV-1 infection, ART does not eliminate the virus from the host genome. Instead, HIV-1 remains latent as a viral reservoir in any tissue containing resting memory CD4+ T cells. The elimination of these residual proviruses that can reseed full-blown infection upon treatment interruption remains the major barrier towards curing HIV-1. Novel approaches have recently been developed to excise or disrupt the virus from the host cells (e.g., gene editing with the CRISPR-Cas system) to permanently shut off transcription of the virus (block-and-lock and RNA interference strategies), or to reactivate the virus from cell reservoirs so that it can be eliminated by the immune system or cytopathic effects (shock-and-kill strategy). Here, we will review each of these approaches, with the major focus placed on the block-and-lock strategy.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: AIDS, Ovid Technologies (Wolters Kluwer Health), Vol. 34, No. 3 ( 2020-03-1), p. 483-486
    Abstract: The pol gene from HIV-2-infected patients from Cape Verde experiencing virologic failure was sequenced and drug resistance mutations were determined. Most patients were taking a first-line regimen of zidovudine (AZT), lamivudine (3TC) and lopinavir/ritonavir (LPV/r). Resistance mutations were found in most patients (11/17; 64.7%) especially I82F (4/7; 57.1%) and M184V (10/17; 58.8%). Resistance to all reverse transcriptase and protease inhibitors was found in 58.8% (10/17) of the patients. Integrase inhibitors are warranted to treat these patients.
    Type of Medium: Online Resource
    ISSN: 0269-9370 , 1473-5571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2020
    detail.hit.zdb_id: 2012212-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2018-08-16)
    Abstract: Any successful strategy to prevent and control HCV infection requires an understanding of the epidemic behaviour among the different genotypes. Here, we performed the first characterization of the epidemic history and transmission dynamics of HCV subtypes in Portugal. Direct sequencing of NS5B was performed on 230 direct-acting antiviral drugs (DAA)-treatment naïve patients in Lisbon. Phylogenetic analysis was used for subtyping and transmission cluster identification. Bayesian methods were used to reconstruct the epidemic history of HCV subtypes. Sequences were analysed for resistance-associated substitutions (RAS). The majority of strains were HCV-GT1 (62.6%), GT3 (18.3%, all subtype 3a) and GT4 (16.1%). Among GT1, the most frequent were subtypes 1a (75.5%) and 1b (24.5%). Polyphyletic patterns were found in all but 12 lineages suggesting multiple introductions of the different subtypes in this population. Five distinct epidemics were identified. The first significant HCV epidemic in Portugal occurred between 1930s and 1960s, was caused almost exclusively by GT1b and was likely associated with blood transfusions. Rapid expansion of GT3a occurred in the 1960s and GT1a in the 1980s, associated with intravenous drug use. The most recent epidemics were caused by GT4a and GT4d and seem to be associated with the resurgence of opioid use. The C316N substitution was found in 31.4% of GT1b-patients. Close surveillance of patients bearing this mutation and undergoing dasabuvir-based regimens will be important to determine its impact on treatment outcome.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: BioMed Research International, Hindawi Limited, Vol. 2014 ( 2014), p. 1-8
    Abstract: Abnormal chromosome number, or aneuploidy, is a common feature of human solid tumors, including oral cancer. Deregulated spindle assembly checkpoint (SAC) is thought as one of the mechanisms that drive aneuploidy. In normal cells, SAC prevents anaphase onset until all chromosomes are correctly aligned at the metaphase plate thereby ensuring genomic stability. Significantly, the activity of this checkpoint is compromised in many cancers. While mutations are rather rare, many tumors show altered expression levels of SAC components. Genomic alterations such as aneuploidy indicate a high risk of oral cancer and cancer-related mortality, and the molecular basis of these alterations is largely unknown. Yet, our knowledge on the status of SAC components in oral cancer remains sparse. In this review, we address the state of our knowledge regarding the SAC defects and the underlying molecular mechanisms in oral cancer, and discuss their therapeutic relevance, focusing our analysis on the core components of SAC and its target Cdc20.
    Type of Medium: Online Resource
    ISSN: 2314-6133 , 2314-6141
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2014
    detail.hit.zdb_id: 2698540-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...