GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Public Library of Science (PLoS) ; 2015
    In:  PLOS ONE Vol. 10, No. 8 ( 2015-8-7), p. e0134854-
    In: PLOS ONE, Public Library of Science (PLoS), Vol. 10, No. 8 ( 2015-8-7), p. e0134854-
    Type of Medium: Online Resource
    ISSN: 1932-6203
    Language: English
    Publisher: Public Library of Science (PLoS)
    Publication Date: 2015
    detail.hit.zdb_id: 2267670-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The Company of Biologists ; 2009
    In:  Journal of Experimental Biology Vol. 212, No. 6 ( 2009-03-15), p. 768-777
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 212, No. 6 ( 2009-03-15), p. 768-777
    Abstract: In tetrapods, feeding behaviour in general, and prey capture in particular,involves two anatomical systems: the feeding system and the locomotor system. Although the kinematics associated with the movements of each system have been investigated in detail independently, the actual integration between the two systems has received less attention. Recently, the independence of the movements of the jaw and locomotor systems was reported during tongue-based prey capture in an iguanian lizard (Anolis carolinensis), suggesting a decoupling between the two systems. Jaw prehension, on the other hand, can be expected to be dependent on the movements of the locomotor system to a greater degree. To test for the presence of functional coupling and integration between the jaw and locomotor systems, we used the cordyliform lizard Gerrhosaurus major as a model species because it uses both tongue and jaw prehension. Based on a 3-D kinematic analysis of the movements of the jaws, the head, the neck and the forelimbs during the approach and capture of prey, we demonstrate significant correlations between the movements of the trophic and the locomotor systems. However, this integration differs between prehension modes in the degree and the nature of the coupling. In contrast to our expectations and previous data for A. carolinensis,our data indicate a coupling between feeding and locomotor systems during tongue prehension. We suggest that the functional integration between the two systems while using the tongue may be a consequence of the relatively slow nature of tongue prehension in this species.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2009
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Integrative Organismal Biology
    In: Integrative Organismal Biology, Oxford University Press (OUP)
    Abstract: As a muscular hydrostat, the tongue undergoes complex deformations during most oral behaviors, including chewing and drinking. During these behaviors, deformations occur in concert with tongue and jaw movements to position and transport the bolus. Moreover, the various parts of the tongue may move and deform at similar timepoints relative to the gape cycle or they may occur at different timepoints, indicating regional biomechanical and functional variation. The goal of this study is to quantify tongue biomechanics during chewing and drinking in pigs by characterizing intrinsic deformations of the tongue across multiple regions simultaneously. Tongue deformations are generally larger during chewing cycles compared to drinking cycles. Chewing and drinking also differ in the timing of regional length and width, but not total length, deformations. This demonstrates functional differences in the temporal dynamics of localized shape changes whereas the global properties of jaw-tongue coordination are maintained. Finally, differences in the trade-off between length and width deformations demonstrate that the properties of a muscular hydrostat are observed at the whole tongue level, but biomechanical variation (e.g., changes in movements and deformations) at the regional level exists. This study provides new critical insights into the regional contributions to tongue deformations as a basis for future work on multidimensional shape changes in soft tissues.
    Type of Medium: Online Resource
    ISSN: 2517-4843
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2947578-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Morphology, Wiley, Vol. 285, No. 5 ( 2024-05)
    Abstract: In infants and children with feeding and swallowing issues, modifying solid foods to form a liquid or puree is used to ensure adequate growth and nutrition. However, the behavioral and neurophysiological effects of prolonged use of this intervention during critical periods of postnatal oral skill development have not been systematically examined, although substantial anecdotal evidence suggests that it negatively impacts downstream feeding motor and coordination skills, possibly due to immature sensorimotor development. Using an established animal model for infant and juvenile feeding physiology, we leverage X‐ray reconstruction of moving morphology to compare feeding behavior and kinematics between 12‐week‐old pigs reared on solid chow (control) and an age‐ and sex‐matched cohort raised on the same chow softened to a liquid. When feeding on two novel foods, almond and apple, maintenance on a soft diet decreases gape cycle duration, resulting in a higher chewing frequency. When feeding on almonds, pigs in this group spent less time ingesting foods compared to controls, and chewing cycles were characterized by less jaw rotation about a dorsoventral axis (yaw) necessary for food reduction. There was also a reduced tendency to alternate chewing side with every chew during almond chewing, a behavioral pattern typical of pigs. These more pronounced impacts on behavior and kinematics during feeding on almonds, a tougher and stiffer food than apples, suggest that food properties mediate the behavioral and physiological impacts of early texture modification and that the ability to adapt to different food properties may be underdeveloped. In contrast, the limited effects of food texture modification on apple chewing indicate that such intervention/treatment does not alter feeding behavior of less challenging foods. Observed differences cannot be attributed to morphology because texture modification over the treatment period had limited impact on craniodental growth. Short‐term impacts of soft‐texture modification during postweaning development on feeding dynamics should be considered as potential negative outcomes of this treatment strategy.
    Type of Medium: Online Resource
    ISSN: 0362-2525 , 1097-4687
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2024
    detail.hit.zdb_id: 1479991-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Morphology, Wiley, Vol. 277, No. 3 ( 2016-03), p. 379-393
    Abstract: Ancestral frogs underwent anatomical shifts including elongation of the hindlimbs and pelvis and reduction of the tail and vertebral column that heralded the transition to jumping as a primary mode of locomotion. Jumping has been hypothesized to have evolved in a step‐wise fashion with basal frogs taking‐off with synchronous hindlimb extension and crash‐landing on their bodies, and then their limbs move forward. Subsequently, frogs began to recycle the forelimbs forward earlier in the jump to control landing. Frogs with forelimb landing radiated into many forms, locomotor modes, habitats, and niches with controlled landing thought to improve escape behavior. While the biology of take‐off behavior has seen considerable study, interspecific comparisons of take‐off and landing behavior are limited. In order to understand the evolution of jumping and controlled landing in frogs, data are needed on the movements of the limbs and body across an array of taxa. Here, we present the first description and comparison of kinematics of the hindlimbs, forelimbs and body during take‐off and landing in relation to ground reaction forces in four frog species spanning the frog phylogeny. The goal of this study is to understand what interspecific differences reveal about the evolution of take‐off and controlled landing in frogs. We provide the first comparative description of the entire process of jumping in frogs. Statistical comparisons identify both homologous behaviors and significant differences among species that are used to map patterns of trait evolution and generate hypotheses regarding the functional evolution of take‐off and landing in frogs. J. Morphol. 277:379–393, 2016. © 2015 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 0362-2525 , 1097-4687
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 1479991-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Morphology, Wiley, Vol. 277, No. 12 ( 2016-12), p. 1539-1558
    Abstract: Although the anuran pelvis is thought to be adapted for jumping, the function of the iliosacral joint has seen little direct study. Previous work has contrasted the basal “ lateral‐bender ” pelvis from the “ rod‐like ” pelvis of crown taxa hypothesized to function as a sagittal hinge to align the trunk with take‐off forces. We compared iliosacral movements and pelvic motor patterns during jumping in the two pelvic types. Pelvic muscle activity patterns, iliosacral anteroposterior (AP) movements and sagittal bending of the pelvis during the take‐off and landing phases were quantified in lateral bender taxa Ascaphus (Leiopelmatidae) and Rhinella (Bufonidae) and the rod‐like Lithobates (Ranidae). All three species exhibit sagittal extension during take‐off, therefore, both pelvic types employ a sagittal hinge. However, trunk elevation occurs significantly earlier in the anuran rod‐like pelvis. Motor patterns confirm that the piriformis muscles depress the urostyle while the longissimus dorsi muscles elevate the trunk during take‐off. However, the coccygeoiliacus muscles also produce anterior translation of the sacrum on the ilia. A new model illustrates how AP translation facilitates trunk extension in the lateral‐bender anurans that have long been thought to have limited sagittal bending. During landing, AP translation patterns are similar because impact forces slide the sacrum from its posterior to anterior limits. Sagittal flexion during landing differs among the three taxa depending on the way the species land. AP translation during landing may dampen impact forces especially in Rhinella in which pelvic function is tuned to forelimb‐landing dynamics. The flexibility of the lateral‐bender pelvis to function in sagittal bending and AP translation helps to explain the retention of this basal configuration in many anurans. The novel function of the rod‐like pelvis may be to increase the rate of trunk elevation relative to faster rates of energy release from the hindlimbs enabling them to jump farther. J. Morphol. 277:1539–1558, 2016. © 2016 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 0362-2525 , 1097-4687
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 1479991-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Physiological Society ; 2020
    In:  Journal of Applied Physiology Vol. 128, No. 4 ( 2020-04-01), p. 941-951
    In: Journal of Applied Physiology, American Physiological Society, Vol. 128, No. 4 ( 2020-04-01), p. 941-951
    Abstract: During chewing, movements and deformations of the tongue are coordinated with jaw movements to manage and manipulate the bolus and avoid injury. Individuals with injuries to the lingual nerve report both tongue injuries due to biting and difficulties in chewing, primarily because of impaired bolus management, suggesting that jaw-tongue coordination relies on intact lingual afferents. Here, we investigate how unilateral lingual nerve (LN) transection affects jaw-tongue coordination in an animal model (pig, Sus scrofa). Temporal coordination between jaw pitch (opening-closing) and 1) anteroposterior tongue position (i.e., protraction-retraction), 2) anteroposterior tongue length, and 3) mediolateral tongue width was compared between pre- and post-LN transection using cross-correlation analyses. Overall, following LN transection, the lag between jaw pitch and the majority of tongue kinematics decreased significantly, demonstrating that sensory loss from the tongue alters jaw-tongue coordination. In addition, decrease in jaw-tongue lag suggests that, following LN transection, tongue movements and deformations occur earlier in the gape cycle than when the lingual sensory afferents are intact. If the velocity of tongue movements and deformations remains constant, earlier occurrence can reflect less pronounced movements, possibly to avoid injuries. The results of this study demonstrate that lingual afferents participate in chewing by assisting with coordinating the timing of jaw and tongue movements. The observed changes may affect bolus management performance and/or may represent protective strategies because of altered somatosensory awareness of the tongue. NEW & NOTEWORTHY Chewing requires coordination between tongue and jaw movements. We compared the coordination of tongue movements and deformation relative to jaw opening-closing movements pre- and post-lingual nerve transection during chewing in pigs. These experiments reveal that the timing of jaw-tongue coordination is altered following unilateral disruption of sensory information from the tongue. Therefore, maintenance of jaw-tongue coordination requires bilateral sensory information from the tongue.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2020
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Elsevier BV ; 2011
    In:  Zoology Vol. 114, No. 3 ( 2011-6), p. 165-170
    In: Zoology, Elsevier BV, Vol. 114, No. 3 ( 2011-6), p. 165-170
    Type of Medium: Online Resource
    ISSN: 0944-2006
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2011
    detail.hit.zdb_id: 2051297-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Experimental Biology, The Company of Biologists
    Abstract: Feeding movements are adjusted in response to food properties, and this flexibility is essential for omnivorous predators as food properties vary routinely. In most lizards, prey capture is no longer considered to solely rely on the movements of the feeding structures (jaws, hyolingual apparatus), but instead is understood to require the integration of the feeding system with the locomotor system (i.e., coordination of movements). Here, we investigate flexibility in the coordination pattern between jaw, neck and forelimb movements in omnivorous varanid lizards feeding on four prey types varying in length and mobility: grasshoppers, live newborn mice, adult mice and dead adult mice. We test for bivariate correlations between 3D locomotor and feeding kinematics, and compare the jaw-neck-forelimb coordination patterns across prey types. Our results reveal that locomotor-feeding integration is essential for the capture of evasive prey, and that different jaw-neck-forelimb coordination patterns are used to capture different prey types. Jaw-neck-forelimb coordination is indeed significantly altered by the length and speed of the prey, indicating that a similar coordination pattern can be finely tuned in response to prey stimuli. These results suggest feed-forward as well as feedback modulation of the control of locomotor-feeding integration. As varanids are considered to be specialized in the capture of evasive prey (although they retain their ability to feed on a wide variety of prey items), flexibility in locomotor-feeding integration in response to prey mobility is proposed to be a key component in their dietary specialization.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2012
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: The FASEB Journal, Wiley, Vol. 36, No. S1 ( 2022-05)
    Type of Medium: Online Resource
    ISSN: 0892-6638 , 1530-6860
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 1468876-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...